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The physical problem of element yield inversion is transformed into a mathematical problem
of solving overdetermined equations, then the particle swarm optimization algorithm is used
to find the optimal solution of the system of equations to obtain the yield of formation ele-
ments. During the inversion process, relevant parameters such as the objective function, iner-
tia weight factor, and learning factor are designed and optimized to make the particle swarm
optimization algorithm more suitable for gamma spectrum signal processing, avoiding local
extremum problems during the optimization process and improving the accuracy of element
yield inversion. The calculation results show that compared with the traditional least squares
method, the particle swarm optimization algorithm used in this paper can effectively invert
the multi-peak gamma spectrum signal, with high inversion accuracy, and can effectively cal-

culate the yield of trace elements.
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INTRODUCTION

The gamma spectrum measured in neutron
gamma formation element logging contains counts of
various elements, and the gamma counts of each chan-
nel on the logging tool are linearly related to the
gamma counts of each element in that channel.

If the number of measurement channels of the
logging tool is n, then there are
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where i is the measurement channel address, N; — the
total count of measurement channel i, y; — the count of
element; in that channel, and a; — the response coeffi-
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cient of element; in channel i which is calculated using
the element standard spectrum.

During the inversion process, there are errors in
the measurement and calculation processes. Assuming
that the error between the total count of each channel
of the measuring instrument and the actual count of
each element in that channel is ¢, (residual), eq. (1) be-
comes
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Equation (1) only has an accurate solution when
the number of measurement channels of the logging
tool is equal to the number of formation elements that
need to be measured. However, in reality, the number
of measurement channels in the instrument far exceeds
the number of elements in the formation to be deter-
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mined. Therefore, eq. (1) is an overdetermined system
of equations.

The least squares method is a commonly used
approach for solving overdetermined systems of equa-
tions [1, 2]. The basic principle of the least squares
method is to find a solution that minimizes the sum of
squared errors and use it as the optimal solution for the
overdetermined equation system. If the sum of squares
of ¢; is SSR and the total number of channels in the
measuring instrument is 7, the calculation formula for
SSR is

SSR=Y,el =X (N, =X a; v,))" ()

The principle of the least squares method is sim-
ple and easy to implement, making it a widely used
method for element yield inversion [3-8].

The gamma spectrum curve obtained from
pulsed neutron gamma formation element logging is
multimodal and solving it using the least squares
method may lead to local extremum. In addition, in the
actual inversion process, there may also be cases
where the yield value is negative, which is inconsistent
with the actual situation.

The processing of energy spectrum data encom-
passes a variety of methodologies [9-13], constituting
a prominent research focus in the field of radiation
measurement. In recent years, due to the continuous
development of computing technology, various math-
ematical analysis methods and biologically intelligent
evolutionary algorithms have gradually been applied
to energy spectrum analysis. Among these algorithms,
particle swarm optimization (PSO) searches for the
optimal solution through cooperation and informa-
tion-sharing among individuals in a population, dem-
onstrating good parallelism and globality, rapid search
speed, and a comprehensive search range. It is cur-
rently a trending research topic extensively applied in
various fields [14-17].

The PSO is commonly used to find optimal solu-
tions for non-linear, non-smooth, and multimodal
functions, and is particularly suitable for extreme
value calculations of gamma spectrum data with high
randomness and multiple extrema [18,19]. This article
aims to use the PSO algorithm to invert the element
yield in pulse neutron gamma formation element log-

ging.

PRINCIPLE OF PARTICLE
SWARM OPTIMIZATION

In the PSO algorithm, the position of each parti-
cle is the solution of the objective function, and the
quality of the solution is evaluated by fitness, which is
determined by the objective function. All particles
know their optimal position (local optimal solution,
represented as pbest) and the current position they

have experienced. Each particle knows the best posi-
tion experienced by all particles so far (global optimal
solution, represented as gbest). Each particle deter-
mines its next velocity (vector) [20, 21].
If the solution space is N-dimensional, the posi-
tion of particle i is X7, and the velocity is V'’
Xil = (X1 Xip o X ) (4)
4 :(xi,l Xi2 "'xi,N)
Each particle updates its position and velocity
based on the results of self-learning and group learn-
ing using eq. (5)

vi i (t+D=wy; (O)+cilp;; (0)-x; ; (0)]+
+eyn[pg ; (0)—x; ; (1)]
Xi,j (t+ 1):xi,j )+ Vi (t+1), j=12,...N (5

where wis the inertia weight, ¢ — the self-learning fac-
tor, ¢, — the group learning factor, and the range of val-
ues for ¢; and ¢, is (0, 2), 7, and », are uniformly dis-
tributed random numbers within the interval of [0, 1].
Equation (5) is the core content of the PSO algorithm.
All particles iterate according to this equation until the
optimal solution is found.

According to eq. (5), to calculate the optimal so-
lution of the objective function using PSO, key param-
eters such as determining the objective function, set-
ting the initial position, weighting factors, and
learning factors need to be determined. This article
sets relevant parameters based on the characteristics of
the energy spectrum signal obtained from pulse neu-
tron gamma formation element logging.

Set objective function

This article constructs the objective optimiza-
tion function based on the basic principle of the least
squares method. Add constraints to ensure that the
yield x and fitness of each element are not negative

min f(x)=min (X7 (N, =3"_ a;x;)")
x2>0,5>0 (6)

Set initial solution

In pulsed neutron gamma formation element
logging, the gamma spectrum measured by the log-
ging tool is a multimodal curve. Based on this charac-
teristic, this article uses a set of Gaussian distribution
signals as the initial solution. The distribution function
of the Gaussian signal is

=t)* @=by)* (r=bs)° (r=by)°
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where x is the channel address (x = 1, 2,..., 200); A
Gaussian signal has four peaks (ay, a,, a3, a4), and the
value of each peak is a random number within the in-
terval [0, 1], by, by, b3, by are the channel addresses of
the first peak, second peak, third peak, and fourth
peak, d,, dy, ds, d, are the standard deviation of each
peak, taking random integer within the intervals [10,
20].

Whena;=0.3,a,=02,a;=02,a,=0.1,b, =
30,b6,=60,b,=100,b,=150,d,=10,d,=15,d;=15,
d, =10, the Gaussian signal is shown in fig. 1.

Inertia weight factor

As wincreases, the search range of the algorithm
expands, enhancing its global search ability, and
speeding up convergence. However, the solution ob-
tained may lack sufficient accuracy. When w is small,
the algorithm's search range decreases, improving the
effectiveness of local search and yielding a more accu-
rate solution. However, this also increases the risk of
getting trapped in local extrema. At the initial stage of
inversion, due to the significant distance between ran-
dom dissociation and the optimal solution, particles
should move at a higher velocity to approach the opti-
mal solution faster; After multiple iterations, the posi-
tion of the particles may have approached the optimal
solution. At this stage, the particles should move at a
reduced speed to accurately search for the optimal so-
lution within the local range. This article proposes a
formula for calculating a variable inertia weight factor,
designed to increase the particle's motion velocity dur-
ing the initial stage of the process and decrease it in the
later phase. 5

W =W max _(Wmax ~ Wmin )(%j (9)
where Wy (0.9) is the maximum weight, wy,, (0.4) is
the minimum weight, ¢ (1, 2,..., 50) is the current num-
ber of iterations, and 7'(50) is the total number of itera-
tions.

Learning factor

In the early stages of algorithm computation, parti-
cles primarily rely on self-learning due to their random
initial positions, the notable separation between them,
and their long distance from the optimal solution. During
the later stage of algorithm computation, as the PSO
search process continues, the global optimal solution is
closer to the optimal solution, encouraging particles to
group-learning [22-25]. The learning factor calculation
formula used in this article is as follows

t
¢ =Cp _(Cmax —Cp )_

g (10)
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Figure 1. Initial solution signal
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Figure 2. The trend of inertia weight factor changes

where ¢y = 1.4962, which is the initial value of the
learning factor, ¢y, = 2, which is the maximum value
of the learning factor, # — the current number of times
the algorithm has searched, and 7—the total number of
times the algorithm has searched. The value of the
self-learning factor (¢;) gradually decreases from ¢, to
0.9924, the value of the group learning factor (c,)
gradually increases from ¢y to 2. Figure 3 shows the
trend of changes in learning factors.

ELEMENT YIELD INVERSION

Rock standard spectrum simulation

In this article, experimental data is obtained
through forward simulation. The composition ratio of
rocks in the formation is shown in tab. 1.

Calculate response coefficient

To obtain the response coefficient (a;), it is nec-
essary to simulate the standard spectra of the elements.
Due to different elements having different inelastic
scattering cross-sections and capture cross-sections,
element yield inversion can be divided into inelastic
spectra element yield inversion and capture spectra el-
ement yield inversion. The total number of channels in
the energy spectra signal is 200. Calculate the yield of
C, Al, Ca, Mg, O, and Si using gamma inelastic spec-
tra; Calculate the yields of Al, Ca, Fe, K, Mg, Na, and
Si using gamma capture spectra.
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Figure 3. Trend of changes in learning factors;
(a) self-learning factor and (b) group learning factor

carbonate because the inelastic scattering cross-sec-
tion of carbon element is 0.245-1028 m? [20, 21]. The
setting of formation materials is shown in tab. 2.

After obtaining the gamma standard spectra
through simulation, the inelastic spectra are separated
using inelastic gates and then processed through
denoising, background removal, and net spectra cal-
culation. The final net spectra of the element standard
spectra were obtained, as shown in fig. 4.

Gamma capture standard spectra

To obtain element capture spectra through simu-
lation, it is necessary to ensure that the 14 MeV fast
neutrons are completely slowed down before capture
reactions occur between neutrons and the atomic nu-
clei that make up the formation material elements. Due
to hydrogen being the strongest neutron moderator,
pure water is used as the wellbore material. Due to the
low absorption cross-sections of oxygen and carbon
(with an absorption cross-section of 0.2 microbar for
oxygen and 3.3 microbar for carbon), the contribution
of oxygen and carbon to the capture spectrum is negli-
gible, so the formation filling material is set as the ox-
ide or carbonate of the target element. The setting of
formation materials is shown in tab. 3.

Similar to inelastic spectra, after obtaining the
formation spectrum through simulation, capture gates
are used to separate the capture spectrum, followed by a
series of processes such as denoising, background sub-

Table 2. Simulation conditions for
inelastic standard spectra of elements

Formation Inelastic Gamma
Element ﬁllll’lg material CI'OSS:ZSSGC%OI’I characteristic
Gamma inelastic standard spectra (10~ m] energy [MeV]
C CxHyg 0.245 4.43
When obtaining the standard spectra through ;)1 HSZIO 00'357 6'113;5 8
numerical simulation, due to the inelastic scattering Ca Ca 6.1 3:73
cross-sections of oxygen being 0.5-10‘2§ m?, water Al Al 0.087 31
cannot be added to the well, and the formation material Mg Mg 0.485 136
cannot be oxides. The geological material cannot be
Table 1. Simulated lithological composition and proportion [%]
col\nilll)réesri?ilon Sand stone | Mudstone Carrgé)l?s ate Gneiss Granulite ;ﬁfﬁ?&?ﬁz Marble Mgsg;(t)égglc
SiO, 72.63 60.63 6.49 65.63 66.89 49.72 8.09 63.22
AL O3 10.91 16.35 1.14 14.84 14.47 13.72 0.96 16.11
Fe,04 2.46 4.33 0.35 2.03 2.23 4.38 0.26 3.06
FeO 1.09 1.42 0.32 2.73 2.12 7.6 0.33 2.75
Mg 1.26 1.86 6.53 2.15 1.94 7.35 10.56 2.08
CaO 2.52 2.66 42.84 3.26 2.7 9.11 39.14 1.59
Na,O 1.41 0.8 0.1 3.64 3.19 2.48 0.11 1.3
K,O 2.4 3.45 0.34 2.87 2.88 1 0.23 3.9
H,0 2.56 4.56 0.74 1.34 1.88 2.1 1.02 3.26
CO, 1.72 2.15 40.45 0.31 0.38 0.4 38.72 1.02
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Figure 4. Standard inelastic net spectrum

traction, and net spectrum calculation to obtain the ele- perimental data and calculates response coefficients
ment standard capture spectrum, as shown in fig. 5. using standard spectra. Use the least squares method
and PSO algorithm for element yield inversion. In the
inversion process of the PSO algorithm, the initial ve-
locity and position matrices are both 6-100, and the
Gaussian signal shown in fig. 1 is used as the initial so-
lution. The initial value of velocity is a random value
between intervals (0, 1). The least squares method and

Inversion of element yield for
inelastic spectra

In the inversion of yield of inelastic elements,
this paper uses simulated rock inelastic spectra as ex-
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Table 3. Simulation conditions for
capture standard spectra

Formation | Inelastic Gamma characteristic
Element filling | cross-section
material | [10% m?] energy [MeV]

H H,O 0.332 2.23
Si Si0, 0.16  |3% ‘;9139 835,676,
Ca CaCo; 0.43 1.94,4.42, 6.42
Na Na,Cos 0.534 3.587, 3.981, 6.395
Fe Fe,0; 2.55 6.03,7.64
Al ALO; 0.230 3.02,4.16,4.79, 7.72
Mg MgO 0.063 3.92
K K>Cos 2.10 2.02,5.73,7.76

PSO algorithm were used to invert the element yield of
the inelastic spectrum, and the inversion results are
shown in tabs. 4 and 5.

Table 4 shows the results of element yield inver-
sion using the least squares method for inelastic spec-
tra. The elements with a higher proportion in the rock
during simulation also have a higher yield in the inver-
sion results. The yield of Si element obtained by inver-
sion of granite, mudstone, gneiss, mudstone, sand-
stone, and plagioclase amphibolite is 24 % -27 %, and
the yield of O element is 22 % -29 %. The yield of O
in marble is 27 %, and the yield of Ca element is 18 %.
The highest yielding elements in carbonate rocks are O
(24 %) and Ca (24 %). The element yields of various
rocks are consistent with the element ratios set during
forward modeling. However, the yield of low-content
elements (Mg, Fe, etc.) in the rocks obtained through
inversion is inconsistent with the content ratio set by
forward simulation. Indicating that the weighted least
squares method is inaccurate in inverting the yield of
elements with lower content.

Table 5 shows the results of using the PSO algo-
rithm for yield inversion of inelastic spectral elements.
The table indicates that the elements with higher yields in
metamorphic rocks, metamorphic mudstone, gneiss,
mudstone, sandstone, and plagioclase amphibolite are
Si (22 %~28 %) and O (24 %~30 %). Elements with
higher yields are O (28 %) and Ca (18 %). The inversion
results of elements with high content in rocks closely re-
semble those obtained using the least squares method, in-
dicating that the PSO algorithm used in this paper can ef-
fectively be used for the inversion of inelastic spectra.

Inversion of element yield
for capture spectra

The process of capturing spectral element yield
inversion is basically the same as that of inelastic spec-
tral element yield inversion. However, in the inversion
of element capture spectra, it is necessary to use cap-
ture standard spectra to calculate the response coeffi-

cients of elements. The least squares method and PSO
algorithm were used to invert the element yield of the
element capture spectra, and the inversion results are
shown in tabs. 6 and .

In the results of least squares inversion, the high-
est yielding element in metamorphic rocks, metamor-
phic mudstone, gneiss, mudstone, sandstone, and am-
phibolite is Si (25 %~30 %). The element with the
highest yield in marble and carbonate rocksis Ca
(28 %, 30 %). The yields of iron elements in granulite,
metamorphic mudstones, mudstones, gneiss, and
plagioclase amphiboles are 9 %, 14 %, 9 %, 12 %,
24 %. The yield of K in metamorphic mudstone and
gneiss is 16 %, and the yield of Al in plagioclase
hornblende is 16 %. The yield of these elements is con-
sistent with the element ratios set in the forward simu-
lation. However, the yield of Mg in marble is relatively
small, which does not match the magnesium content
ratio set during the simulation.

In the inversion results of the PSO algorithm, Si is
the most abundant element in metamorphic rocks,
metamorphic mudstones, gneiss, mudstones, gneiss,
sandstones, and plagioclase amphiboles, with a yield of
23 % to 30 %. The Ca is the most abundant element in
marble and carbonate rocks, with a yield value of 28 %
to 30 %. The yield of iron and aluminum elements is
consistent with the element ratio set when simulating
rock spectra, indicating that the PSO algorithm can be
effectively used for element yield inversion of capture
spectra. Compared with the least squares method, the
PSO algorithm has a higher yield of Mg in rocks with
higher content, indicating that the PSO method can ef-
fectively improve the recognition rate of Mg.

The results of inelastic and capture spectra in-
version clearly demonstrate that the overall yield dis-
tribution of each element corresponds to the elemental
content in the rock, indicating that the yield distribu-
tion is fundamentally reasonable. These findings con-
firm that the PSO algorithm discussed in this article
can be effectively applied for element yield inversion
of inelastic and capture spectra.

CONCLUSION

To make the PSO algorithm more suitable for in-
verting the energy spectrum data of pulse neutron
gamma formation element logging, this paper pro-
poses a new formula for calculating inertia weight,
which reduces the inertia weight with increasing itera-
tion times. Additionally, a new learning factor calcula-
tion function is introduced. As the search proceeds, the
self-learning influence of particles gradually weakens,
while the group-learning influence of particles gradu-
ally increases, effectively improving the convergence
speed of the algorithm and the accuracy of the inver-
sion results.
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Figure S. Standard capture net spectra



B. Xie, et al., Research on an Improved Particle Swarm Optimization Algorithm ...
44 Nuclear Technology & Radiation Protection: Year 2025, Vol. 40, No. 1, pp. 37-46

Table 4. Element yield of inelastic spectrum (least squares) [%o]

Element Granulite Mgsg;?;g 210 Marble | Mudstone Gneiss | Sand stone Carr(t):l?sate ;lrfpg}ll?g(l)?istz
C 0 0 0.03 0.01 0 0 0.04 0.02
Al 0.07 0.07 0 0.07 0.07 0.04 0 0.08
Ca 0.02 0.02 0.14 0.03 0.01 0 0.17 0.04
Mg 0.01 0 0.02 0.01 0.01 0.02 0.01 0.01
O 0.22 0.25 0.27 0.28 0.24 0.27 0.24 0.29
Si 0.24 0.25 0.03 0.27 0.26 0.25 0.02 0.26
Fe 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.08

Table 5. Element yield of inelastic spectrum (PSO) [%)]

Element | Granulite | Metamorphic mudstone | Marble | Mudstone | Gneiss | Sand stone | Carbonate rocks | Plagioclase amphibolite
C 0.02 0.00 0.03 0.01 0.01 0.02 0.03 0.02
Al 0.05 0.06 0.01 0.07 0.08 0.05 0.03 0.08
Ca 0.02 0.02 0.18 0.04 0.02 0.02 0.19 0.04
Mg 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02
O 0.24 0.29 0.28 0.29 0.27 0.30 0.28 0.25
Si 0.22 0.28 0.03 0.24 0.27 0.28 0.02 0.24
Fe 0.01 0.03 0.01 0.03 0.03 0.04 0.02 0.09

Table 6. Element yield of capture spectra (least squares) [%]

Element | Granulite | Metamorphic mudstone | Marble | Mudstone

Gneiss | Sand stone | Carbonate rocks | Plagioclase amphibolite

Al 0.06 0.08 0.02 0.09 0.11 0.08 0.01 0.16
Ca 0.01 0.02 0.28 0.04 0.02 0.04 0.35 0.05
Fe 0.09 0.14 0.01 0.09 0.12 0.02 0.01 0.24
K 0.04 0.16 0.02 0.11 0.21 0.07 0.01 0.03
Mg 0.03 0.01 0.06 0.02 0.04 0.05 0.02 0.03
Na 0.02 0.03 0.02 0.01 0.10 0.07 0.05 0.09
Si 0.28 0.25 0.04 0.28 0.29 0.34 0.06 0.24

Table 7. Element yield of capture spectra (PSO) [%]

Element | Granulite | Metamorphic mudstone | Marble | Mudstone | Gneiss | Sand stone | Carbonate rocks | Plagioclase amphibolite

Al 0.08 0.09 0.03 0.08 0.07 0.08 0.06 0.12

Ca 0.02 0.01 0.28 0.04 0.05 0.05 0.30 0.08

Fe 0.07 0.15 0.01 0.10 0.10 0.03 0.01 0.21

K 0.04 0.21 0.01 0.08 0.21 0.06 0.02 0.06

Mg 0.04 0.07 0.04 0.03 0.05 0.04 0.02 0.05

Na 0.04 0.05 0.02 0.02 0.13 0.07 0.01 0.08

Si 0.27 0.25 0.02 0.23 0.28 0.30 0.02 0.27
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bo CJE, Iubuao ITAHT, llanrnunar CJE

NCTPAXKUBAIBLE ITOBO/BITAHOI AJITOPUTMA OINTUMMU3AIINIE POJA
YECTHUIA 3A MHBEP3WJY INIPUHOCA EJIEMEHATA Y IIYJICHOM
HEYTPOHCKOM IT'AMA ®OPMUPAIBLY EJEMEHATA

du3makn npo6IiieM MHBEp3Hje IPIHOCca elIeMeHaTa TpaHC(OpMHUIIIe ce y MaTEMaTHIKHU TPOOIIeM
pelaBama npeofipebennx jemHaunHa. 3aTUM ce alropuTaM ONTHMHU3AlMje poja YecTHla KOPUCTH 3a
OpoHaJaXemhe ONTHMATHOr pelliekha CHCTeMa jelHaYMHa, KaKo OM ce J00MOo MpHHOC (hOpMAIMOHUX
enreMeHaTa. TOKOM Iporeca MHBEp3Hje, peJIeBaHTHHU TapaMeTPH Kao IITO ¢y (PYHKIH]ja IJba, TEKMHCKA
¢akTop nHEpHHje n PaKTOP yUeHA AN3aJHAPAHN Cy U ONITUMU30BAHU KaKO OW aJirOpUTaM ONTHMU3AIH]e
poja yecTuna GMO MOTOAHMjU 3a OOpajy CHrHaja rama CrekTpa, m3beraBajyhu mpobiemMe JOKATHHUX
eKCTpeMa TOKOM Ipolieca ONTHUMHU3alje W MoOobIlaBajyhu Ta4HOCT MHBEp3Wje MPUHOCA elIeMEHaTa.
Pesynratn mpopadyHa mokasyjy Aa, y mopebemy ca TpauIMOHAIHOM METOAOM HajMamWX KBajpara,
aJTOpHUTaM ONTHUMH3AIMje poja decThIa KOpuITheH Y OBOM Pafy MoxXKe e(pHKacHO HHBEPTOBATH CHTHAI
rama CIIeKTpa ca BHIIIe MUKOBA, Ca BUCOKOM TayHOIIThy MHBEp3Hje U MOKE e(PUKACHO U3PAYyHATH MIPUHOC
eJeMeHaTa y TparoBuMa.

Kwyune peuu: HeypOH-2ama A10208akbe, eAemMeHill popmavuje, Zama ciieKiiap, UuHeep3uja UpuHoca
eNeMeHIlla, OUHUMUSAUUJa pOja YeCTUUUa




