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The paper discusses the influence of the dose of gamma or neutron radiation on a commercial
silicon photovoltaic cell under operating conditions. Before the measurement, the cells were
irradiated with electromagnetic gamma radiation or neutron radiation. The examination was
carried out experimentally and theoretically. The experiments were performed under
well-controlled laboratory conditions. Only licensed instruments were used. The measure-
ment uncertainty of the experimental procedure was less than 5 %.
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INTRODUCTION

Solar cells are p-n junctions that function based
on the effect of incident photons. The condition for the
functioning of solar cells is that the incident photons
have an energy greater than the value of the energy gap
(forbidden zone) of the material. If this condition is
met, the conditions for photon absorption are created
[1,2]. Depending on the energy of the incident photon
and the properties of the material of the p-n junction,
photon absorption can take place in the n+ part of the
space charge region or in the n p part (if working in an
n+-p junction). If the surplus of minority carriers cre-
ated in this way (cavities in the n+ part and electrons in
the p part) can reach the boundary of the space charge
area by diffusion. The voltage polarity of the diode is,
then, identical to the direct polarization of an ordinary
external diode but, the direction of the photo generated
current is opposite to the direction of the current of the
external diode in the case of direct polarization which,
in the case of external cells, is called dark current and
is a degrading factor [3, 4].

The voltage drop on the consumer, created by the
flow of light-generated current, has the same effect as
connecting the battery to a direct bias voltage of value
RI. Therefore, when the incident light interacts with
the solar cell, the following physical processes occur:
—  Reflection of part of the energy from the cell sur-

face,
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—  Dbeneficial absorption with the creation of
hole-electron pairs,

—  separation of photo generated charge carrier,

—  movement of charge carriers towards external
contacts,

—  dissipation of the photo generated current on the
external consumer, and

—  inrelation to the mentioned phenomena, the re-
quirements for obtaining efficient solar cells are
as follows [5, 6]:

—  absorption of photons and creation of elec-
tron-hole pairs,

—  generated electron-hole pairs are separated in
n-type and p-type p-n junctions,

—  the building potential must be large enough be-
cause it determines the maximum output voltage
of the cell. Ohmic voltage drop, as a conse-
quence of parasitic resistances, must be reduced
to the smallest possible extent, and

— all metal covers must be small, as they are not
transparent to photons, [7, 8].

Efficiency as an output parameter is determined
by a combination of three fundamental characteristics
of'asolar cell: the fill factor (a measure of squareness),
short-circuit current density, and open-circuit voltage.
From the perspective of evaluating solar cell quality, it
is important to consider the interdependence of these
parameters and their combined influence on effi-
ciency. Specifically, the simultaneous interaction of
the cell's physical parameters primarily contributes to
reducing excessive current density and minimizing
losses due to saturation of the contact grid.
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Regarding the physical aspects of loss analysis
(i. e., the reduction in efficiency), special attention
should be paid to the reflection of photons from the
cell surface, which decreases the number of photons
entering the semiconductor material, thereby reducing
the photogeneration of electron-hole pairs. In this con-
text, the aim of this paper is to determine the impact of
electromagnetic and gamma radiation on the effi-
ciency of solar cells.

It should be noted that this work continues the
authors' interest in the impact of ionizing radiation on
electronic components. Specifically, the increasing
miniaturization of electronic components and the
growing environmental contamination by ionizing ra-
diation (especially near nuclear facilities and at high
altitudes) have heightened the relevance of this issue.

DEPENDENCE OF SHORT CIRCUIT
CURRENT AND OPEN CIRCUIT
VOLTAGE ON THE PHYSICAL
PARAMETERS OF THE SOLAR CELL

The basic current-voltage (I-V) characteristics
of solar cells are the surface short-circuit current den-
sity J,., and the open-circuit voltage V.. The values of
those quantities are easily (directly) read from the I-V
characteristic. They represent the two endpoints of the
operation of the photovoltaic device. The open circuit
voltage is determined by the infinite resistance of the
short circuit when the voltage is equal to zero [9, 10].

The short-circuit current density is most justifi-
ably defined by the superposition of the photo gener-
ated current and the dark current. This definition of the
junction current is closest to ideal or near-ideal solar
cells. The I-V characteristics of such cells can be rep-
resented by the equation
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where Jj is the saturation current density, V' — the ap-
plied voltage, n — the ideality factor, k—the Boltzmann
constant, ¢ — the elementary charge, and 7 — the tem-
perature. This I-V characteristic is satisfactory for the
case of small series and high parallel resistance. How-
ever, in real cases the I-V characteristic has the form
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where Jy; and Jy, are the saturation current densities of

n=1andn > 1, respectively, and R, and Ry, are the se-
ries and parallel resistances, respectively.

The existence of the current J on the right side of
the equation in the case when R, # 0 and R, is finite,
prevents the direct superposition of the photo gener-
ated current and the dark current. In the case when the
parallel resistance Ry, is extremely small, the short-cir-
cuitcurrentis slightly smaller than the photo generated
current J;, i. e.

Jsc O (4)

sh

Since in most solar cells the parallel resistance
has a large value, the approximation J, =—J; | is con-
sidered satisfactorily accurate (except at higher
illuminance values). The short-circuit current is pri-
marily determined by the spectrum and intensity of the
light source and the spectral response of the semicon-
ductor material of the solar cell (the number of col-
lected electron-hole pairs) to the incident photon, be-
cause w
Ji =q] F(A)SR(A)dA (5)

0

where F(1) is the number of incident photons per unit
area per unit time (in the unit zone), and SR (1) — the
spectral response, and A the wavelength. On the other
hand, the spectral response depends on the absorption
coefficienta, the depth of the junction, the width of the
depleted area [11-18].

The absorption coefficient a represents the ability
of the material to absorb light of a given wavelength and
depends on the size of the energy gap of the material as
well as on the density of states in the breakdown and va-
lence zone. For materials with an indirect energy gap (for
example Si) the generation of charge carriers occurs deep
below the surface (~10 pum) [19-24].

The analysis of the dependence of the open cir-
cuit voltage on the parameters of the solar cell is based
on the expression that defines V. from the I-V charac-
teristic

% :nk—T In (ﬁ + IJ (6)
q Jo

Equation (6), obtained from eq. (2) when the
output current is equal to zero (i.e. the resistance of the
consumer is very high), can be written

Ve z”"—Tln(ﬂ] )
q J

EXPERIMENT

The experiment is based on recording the /-V char-
acteristic of a solar cell with a variation of measurement
parameters: type of solar cell, type of lighting, intensity
of lighting, type of radioactive radiation, energy and dose
of radioactive radiation. During the experiment, silicon
solar cells with dimensions of 55 mm x 22 mm, based on
monocrystalline and polycrystalline silicon, were used,
fig. 1. The I-V characteristics were recorded under white
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Figure 1. A sample of the tested commercial cell

light. The samples were exposed to radioactive radiation
in the form of a point neutron source (Pu-Be) and a
gamma radiation source (*°Co).

In all the samples, the final value of the internal
series resistance is R,. The value of this resistance is
obtained by numerical differential /- characteristic

r= L for/ >0 (®)
dl’
dv

Since the solar cell is used as an electric genera-
tor, the internal series resistance is as small as possible
during manufacturing. The series resistance of the so-
lar cell depends on the depth of the junction, the con-
centration of impurities in the p and n regions, as well
as the configuration of the contacts on the front surface
[25,26]. Typical series resistance values for solar cells
with a standard front contact are between 0.4 QQ and 0.7
Q2 [27]. For the purpose of analyzing the parameters of
the solar cell depending on the applied radiation dose,
this resistance was eliminated by introducing the R
value in the /-V equation of the solar cell. In this way,
the corrected /-V characteristics are obtained, fig. 2.

The calculated initial resistance values R, of the
sample before irradiation ranged between 0.64 Q and
6.78 Q. For each sample, it was observed that a lower
value of R, corresponds to a higher illuminance. It was
also observed that with the size of the irradiated samples,
there is an increase in the resistance R, which is depend-
ent on the applied radiation dose. The experiments were
performed under well-controlled laboratory conditions.
Only licensed instruments were used. The combined
measurement uncertainty was less than 5 % [29-33].

RESULTS

Figure 3 illustrates the variation of solar cell effi-
ciency as a function of the absorbed gamma radiation
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Figure 2. Uncorrected and corrected I-V characteristic
for sample S,, white light, without correction,
with correction
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Figure 3. Graph of dependence of efficiency on received
dose of gamma radiation for sample S,; white light,
32 Wm™7, 58 Wm™

dose at two distinct illumination levels. The observed
fluctuations in efficiency lack a discernible physical
pattern and cannot be reliably modeled mathemati-
cally. Moreover, these efficiency changes appear ir-
regular and exhibit no consistent trend.

Figure 4 shows the dependence of the cell effi-
ciency on the received two doses of gamma radiation
with two levels of cell brightness. In this experiment,
the cell received a slightly higher dose of radiation and
it clearly shows a decrease in efficiency. The relative
change is greater after the first step of irradiation,
which is consistent with the change in V- and /g val-
ues as well as the fill factor.

Figures 5 and 6 show the dependences of cell ef-
ficiency on the received dose of gamma radiation for
two samples at two levels of cell brightness. These
samples received higher cumulative doses of radia-
tion. In both samples, a sharp relative decrease in effi-
ciency is noticeable after the first step of irradiation
and a slightly less pronounced decrease in efficiency
after the second step of irradiation.
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Figure 4. Graph of dependence of efficiency on received
dose of gamma radiation for sample Ss; white light,
~,58 Wm™
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Figure 5. Graph of dependence of efficiency on received
dose of %amma radiation for sample S;; white light,
32Wm™, 58 Wm™

14.0

10.07 %

Efficiency [%]

8.0 1 X,

6.0

4.0 1

2.0 1

0.0 T T T T T v
0 1000 2000 3000 4000 5000 6000

Dose [kGy]

Figure 6. Graph of dependence of efficiency on received
dose of gamma radiation for sample S¢; white light,
32 Wm?2, 58 Wm™

Figure 7 shows the dependence of the cell effi-
ciency on the received dose of gamma radiation for the
sample for the initial level of cell illumination. As in
the previous two cases, a sharp drop in efficiency is no-
ticeable after the first step of irradiation and a smaller
drop in efficiency after the second step of irradiation.
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Figure 7. Graph of dependence of efficiency on received
dose of neutron radiation for sample S¢, white light,
32 Wm?, 101 Wm?, 255 Wm?, 338 Wm

Figures 8 and 9 show the dependences of cell ef-
ficiency on the received dose of gamma radiation of
samples S, and S; at two levels of cell brightness. A
sharp initial decrease in efficiency after the first step of
irradiation and a significantly less pronounced de-
crease after the second step of irradiation are also no-
ticeable in these samples.
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Figure 8. Graph of dependence of efficiency on received
dose of neutron radiation for sample S; white light,
32Wm?, 58 Wm™
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Figure 9. Graph of dependence of efficiency on received
dose of neutron radiation for sample S; white light,
101 Wm?, 338 Wm™
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Figure 10. Graph of dependence of efficiency on
received dose of neutron radiation for sample S,
monochromatic light, 32 Wm™>, 58 Wm™, 101 Wm™
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Figure 11. Graph of dependence of efficiency on
received dose of neutron radiation for sample Sg,
monochromatic light, 32 Wm?2, 58 Wm™

Figures 10 and 11 show the dependences of cell
efficiency on the received dose of neutron radiation for
the sample at three (respectively two) levels of illumi-
nation. In the case of samples S, and Sy, a repetition of
the trend from most previous cases of efficiency re-
duction is noticeable, which is less pronounced in the
last step of irradiation.

Based on the presented results, it can be con-
cluded that the efficiency of the photovoltaic cell de-
creases faster if it receives a dose of neutron radiation
before the test than if it receives a dose of gamma radi-
ation. The decrease in photocell efficiency is even
greater if the received dose of gamma or neutron radia-
tion is higher. The efficiency drop itself does not de-
pend significantly on the type of light with which the
measurement is made. It can be assumed that the ef-
fects of radiation on the efficiency of the solar a cell
would increase significantly if the solar cell received a
dose of charged ions.

CONCLUSION

In a theoretical loss analysis for a silicon solar
cell with an ideality factor equal to 1, it is estimated

thatreflection as a loss mechanism reduces the total in-
put power by 2 %, and shading caused by the overhead
catenary reduces it by 4 %. If photon absorption occurs
in the self-reflective layer or at defects, those photons
do not contribute to the generation of charge carriers,
resulting in power losses of less than 1 %. Photons that
reach the interior of the solar cell may have energy
greater than the bandgap of the material (E_photon >
Eg). The excess energy above the bandgap cannot be
used in photovoltaic conversion, representing a loss of
up to 30 %. On the other hand, photons with energy
less than the bandgap (E_photon < Eg) pass through
the solar cell without generating electron-hole pairs,
which also causes losses.
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E®PUKACHOCT COJAPHUX REINJA Y YCIOBUMA NEJCTBA
EJEKTPOMATHETHOI' NI HEYTPOHCKOTI 3PAYEIbA

Y pany ce pa3Marpa yTHllaj 03€ raMa Wi HEYTPOHCKOT 3pauetha Ha KOMEPLHjaIHy CUIUIUjYMCKY
¢poronanoHcKy hemyjy y ycnosuma excrnoaranyje. henuje cy npe Meperma 6uiie 03paueHe eJIeKTPOMArHeTHUM
raMa 3pauyemheM WU HEYTPOHCKUM 3pauckeM. VcmMThBame je BpLIEHO EKCIEPUMEHTATHO M TEOPH|CKIUL
EkcneprMeHTH Cy BpILIEHH N0 fOOPO KOHTPOITICAHUM JIa00paTOpujcKuM ycnosuMa. Kopuiithenn cy Hck/bydrBo
JIMIECHIMPAHI THCTPYMEHTH. MepHa HECUTYPHOCT EKCIEPUMEHTATHOT MOCTyNKa Ouia je Mama of S %.

Kmwyune peuu: cuauyujymcka coaapra heauja, 2ama u HeyiipoHCcKo 3paderse, eqpukacHocili heauje



