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The state-controlled radiation environment automatic monitoring stations are important fa-
cilities for monitoring the quality and trends of the radiation environment. However, the
analysis and utilization of monitoring data from these stations have limitations. To address
this issue, this paper proposes an approach that utilizes the high-dimensional data visualiza-
tion method based on t-SNE and PCA-BIRCH algorithm's spectrum clustering model to
classify historical spectrum data. Subsequently, a local outlier factor-based environmental
spectrum abnormal fluctuation detection model is established to enhance discrimination of
non-environmental factors causing spectrum anomalies. Results indicate significant differ-
ences in spectrum aggregation under different meteorological conditions. The clustering al-
gorithm effectively separates clear and rainy weather spectra based on spectral features, with
minimal time consumption and reduced interference from mixed spectrum data. By utilizing
local density features, we establish an anomaly detection model, assigning an abnormal score
to each spectrum. Comparative analysis demonstrates improved discriminability of the
anomaly detection model for unclassified datasets. Our algorithm accurately identifies spec-
trum fluctuations caused by non-environmental factors amidst complex backgrounds, offer-
ing valuable technical support for environmental quality assurance and nuclear emergency de-
cision-making.
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INTRODUCTION

Currently, China has built and operated 500 na-
tional radiation environment air automatic monitoring
stations (hereinafter referred to as automatic stations).
Moreover, the central government has invested 1.2 bil-
lion yuan to build a radiation automatic monitoring net-
work covering all districts and cities in the country [1].
Through radiation environment quality monitoring and
supervisory monitoring, it is possible to comprehen-
sively grasp the quality status of the radiation environ-
ment, changes in radiation environment trends, and
emissions of radioactive pollutants. This approach pro-
vides a scientific basis for environmental law enforce-
ment and radiation pollution prevention, meets the pub-
lic's right to know about the environment, and plays an
important role in ensuring the healthy development of
nuclear energy and nuclear technology utilization.

* Corresponding author, e-mail: Ixg1232022@126.com

Nowadays, the hardware facilities of the radia-
tion monitoring network are complete, with some
functions of remote data transmission and storage [2].
However, there are still some issues to be addressed in
the data utilization and processing, mainly due to the
significant shortcomings in the analysis and utilization
of monitoring data from automatic stations on the ex-
isting data platform. There is a lack of analysis and
evaluation standards for Nal environmental spectra,
and the monitoring and alarm functions of the spec-
trum data have not been effectively utilized. Due to the
scattered distribution of automatic stations, they are
affected by natural environmental and meteorological
factors such as rainfall, and the types of nuclides in the
environmental spectrum are complex and have low ac-
tivity. It is difficult to achieve good results, whether
based on spectrum decomposition or full spectrum
analysis methods. Therefore, there is an urgent to es-
tablish a detection model that is not sensitive to the
fluctuation of complex environmental radiation of Nal
spectrometers.



N. Yunlong, et al., Research on Energy Spectrum Anomaly Detection ...

48 Nuclear Technology & Radiation Protection: Year 2024, Vol. 39, No. 1, pp. 47-57

In traditional gamma spectrum qualitative anal-
ysis, the identification of nuclide species is typically
achieved by comparing the characteristic peaks in the
energy spectrum with a standard nuclide library. This
process involves spectral smoothing, peak finding,
peak area determination, background deduction, full
energy peak fitting, peak net area calculation, nuclide
identification, and activity calculation [3]. However,
during actual measurements, environmental noise can
interfere with the analysis, especially when using a
Nal gamma spectrometer with low energy resolution.
Ifthe substance to be measured contains many types of
nuclides, low content, and complex media, and in
complex environments such as high background, the
measured gamma line will be quite complicated.
Therefore, more advanced spectral analysis algo-
rithms are required to obtain accurate results.

The energy spectrum analysis method based on
peak analysis has undergone advancements over time.
It started with the peak area method [4] and has since
progressed to include the spectral stripping method
[5], inverse matrix method [6], trace by trace least
squares method [7], and function fitting peak area
method [4]. In the case of similar types of nuclides in
the mixed sample, there can be a significant overlap of
energy peaks in the spectral lines. In such cases, the
least squares method is often effective. This method
aims to find the best function that matches the data by
minimizing the sum of squared errors. For spectral
lines, it essentially involves applying a low-pass filter
to remove high-frequency noise from the spectral
lines. The function fitting peak area method involves
dividing the energy spectrum into several regions, fit-
ting each region's full energy peak with a function, and
then integrating the function to obtain the peak area.
This approach can obtain the nuclide category and ac-
tivity of the energy spectrum.

In their research, Liu et al. [8] applied the en-
tropy averaging method to eliminate random interfer-
ence in gamma spectrum measurements. They se-
lected multiple points on the rock profile and obtained
certain results. Fu [9] utilized the least squares fitting
and five-point fitting smoothing methods to fit spec-
tral lines and enhanced the original SNIP algorithm by
implementing a dynamic window through peak
boundary counting. Additionally, they replaced the
original second-order filtering function with a
fourth-order filtering function, resulting in a back-
ground deduction rate of over 95 %. Yang Kui em-
ployed the 3-point center of gravity method, the least
squares moving smoothing method, and Gaussian
low-pass filtering to smooth gamma spectra. They
compared the effectiveness of various smoothing
methods. The Gaussian fitting was used to fit the fea-
ture peaks, while the least squares method was em-
ployed to decompose the heavy peaks, achieving good
results [5]. Zhao et al. [10] applied back propagation
(BP) and OLAM neural networks to develop portable

HPGe gamma spectral nuclide recognition systems. Li
[11] combined the Monte Carlo method with a dou-
ble-layer BP neural network algorithm. They used the
double-layer BP neural network to integrate simulated
data with measured data, successfully analyzing
gamma spectrum data. Wang C. J., et al. [12], and
Wang Y. et al. [13], utilized the fuzzy recognition
mechanism of gamma spectroscopy fingerprint to per-
form energy spectra analysis and nuclide identifica-
tion. Ren et al. [14] proposed a method based on sin-
gular value decomposition to extract feature vectors
and utilized them as input to support vector machines
for constructing classifiers. This method addresses
challenges such as insignificant spectral features and
low recognition accuracy in complex gamma-ray
spectra. It reduces the requirements for detector accu-
racy, minimizes the impact of parameter settings, and
enhances the recognition capability for mixed
nuclides. Zhang et al. [15] presented a method for ex-
tracting gamma spectrum features using sparse repre-
sentation. This method tackles the challenge of feature
extraction in situations where heavy peaks and strong
noise backgrounds coincide with weak peaks in
gamma spectrum analysis. Liu [16] conducted a study
on the application of fuzzy decision trees in gamma
spectroscopy, effectively capitalizing on their advan-
tages, including clear model structure and soft deci-
sion-making. A dynamic division of the sample space
was employed to accurately identify nuclide types in
various scenarios, including those involving small
samples, limited attributes, and both single and mixed
nuclides.

While current full spectrum analysis methods
widely employ complete spectrum information, they
primarily focus on HPGe gamma spectrometer spectra
under controlled laboratory conditions. In the case of
environmental Nal spectra analysis addressed in this
article, these methods are not fully applicable, result-
ing in high rates of false positives and false negatives.

This paper addresses the significant shortcom-
ings in the analysis and utilization of monitoring data.
The #-SNE (stochastic neighbor embedding) method,
which is effective for high-dimensional data visualiza-
tion, is used to perform spectrum dimensional reduc-
tion analysis under different meteorological condi-
tions. Additionally, the PCA-BIRCH clustering
model, capable of high-quality clustering of large
datasets with limited memory resources, is utilized to
classify historical spectrum data. Also, other cluster-
ing methods are selected for comparison to avoid in-
terference caused by mixed types of monitoring data
on subsequent anomaly data detection and applica-
tions. Based on the dataset classification, an local out-
lier factor (LOF) algorithm-based spectrum anomaly
discrimination model is established using the local
density features of the dataset. The model obtains the
anomaly score of the spectrum, where an anomalous
score much greater than 1 indicates that the data point
may be an outlier. Comparing the discrimination re-
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sults on the unclassified dataset demonstrates that
clustering analysis of the dataset can effectively im-
prove the discrimination of the anomaly detection
model on abnormal data points. The clustering anom-
aly detection algorithm proves capable of discriminat-
ing the fluctuations of the spectrum caused by non-en-
vironmental factors under complex environmental
conditions, providing strong guarantees for data qual-
ity in automatic radiation monitoring and nuclear
emergency monitoring. It improves the timeliness, ac-
curacy, and foresight of radiation monitoring work,
provides data support for enhancing the government's
credibility in nuclear emergencies, offers technical
support for national nuclear and radiation supervision
work, and provides strong guarantees for national en-
vironmental and public safety.

PRINCIPLE OF RADIATION DETECTOR

Currently, the automatic stations in China use
spectrometers with an energy range between 30 keV to 3
MeV and a working temperature range of —20 °C to +60
°C. The spectrometer consists of a Nal scintillator, a
PMT photomultiplier tube, a GM detector (optional), an
MCA multi-channel analyzer, and an embedded PC, as
shown in fig. 1. The research object and data source of
this article is the Nal spectrometer used in automatic sta-
tions [17], and the spectrum is shown in fig. 2.

DATA VISUALIZATION ALGORITHM

Principle of stochastic neighbor
embedding algorithm

The SNE is a manifold learning method pro-
posed by Hinton and others [18]. It replaces traditional
Euclidean distance with conditional probability dis-
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Figure 1. Hardware structure schematic diagram of Nal
energy spectrometer
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Figure 2. Environmental Nal energy spectrum

tance to measure the similarity between sample points
and has better visualization effects in high-dimen-
sional data visualization [19].

Assuming the input data is X € R”, Output data
is Y € R (t < n), Assuming there are m sample data
{x, x@__x™ therein x? e X, the data after
dimensionality reduction is {y®, y®, ..., ym} @ ¢
Y. The SNE converts the Euclidean distance between
points into a conditional probability, which expresses
their similarity. Specifically, SNE first calculates the
conditional probability, which is proportional to the
similarity between point and point. The formula for
calculating this probability is

12
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where 0; is the variance of the Gaussian distribution
centered at x .

For data points y @ in low dimensions, the condi-
tional probability ¢;; is used to describe the similarity be-
tween y @ and y ¥, and the formula for redefining ¢; us-

ing the t distribution is
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Algorithm principle of BIRCH

The BIRCH is abalanced iterative and clustering
using hierarchical methods. Its main feature is the abil-
ity to achieve high-quality clustering on large datasets
using limited memory resources while minimizing 7/O
costs by scanning the dataset in a single pass. The
BIRCH is based on the concepts of clustering features
(CF) and CF trees. The CF is essentially a summary of
statistical information for a given cluster, which can be
used to calculate other metrics. The metrics for a single
cluster include
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Among them, the radius R and diameter D can
reflect the tightness of the cluster around the centroid.
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points, as shown in fig. 3. By observing the 2-D distri-
bution of energy spectrum data points and their rela-
tionship with rainfall, it can be determined that the
characteristics of the energy spectrum on rainy days
are significantly different from those on non-rainy
days, resulting in the formation of separate clusters in
low-dimensional visualization plots. However, af-
fected by the rainfall intensity, the impact of energy
spectrum data on rainy days is relatively small when
the rainfall is low, resulting in some data points of
rainy days being mixed in non-rainy energy spectrum
clusters. As the influence of rainfall increases, the
spectrum of rainy days gradually forms independent
clusters.

Effect analysis of energy spectrum
clustering based on PCA-BIRCH

Selecting the daily average energy spectrum data
ofasitein 2019, and using the BIRCH clustering algo-
rithm to divide the energy spectrum data into two clus-
ters: rainy-day spectrum and sunny-day spectrum. The

1
®
@
y 09
&
06 -
0.5
0.4
0.3
® Rain: yes rainfall: 25.0~50.0
0.2 ® Rain: yes rainfall: 0.0~25.0
® Rain: No
0.1
0
o] 0.2 0.4 0.6 0.8 1

Figure 3. The 2-D visualization of spectral data
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Figure 4. Spectral clustering effect based on BIRCH

resulting clustering was visualized using the -SNE al-
gorithm. To evaluate the performance of the BIRCH
algorithm, we compared the clustering results with the
actual data point distribution and also compared it with
other clustering algorithms to verify its effectiveness
in this problem.

The results of energy spectrum clustering based
on the BIRCH algorithm are shown in fig. 4. The cir-
cular dots represent data points with rainfall greater
than zero on that day, while the crosses represent data
points with zero rainfall. The solid and hollow dots
represent the clustering results, where hollow dots
represent rainy-day spectra and solid dots represent
sunny-day spectra. In the 2-D spectral distribution vi-
sualized by the /~-SNE algorithm, it can be seen that the
solid and hollow dots are clustered differently. In the
cluster of solid dots, there are mixed non-rainfall data
points and rainfall data points, indicating that the
BIRCH algorithm also classified the part with rainfall
but had little impact on spectral features into
sunny-day spectra. In the cluster of hollow dots, all the
data points have rainfall greater than zero, and this part
of the spectrum is significantly affected by rainfall, re-
sulting in a significant difference in spectral features
compared to sunny-day spectra.

In addition, other clustering methods are also selected
for comparison, as shown in fig. 4. From top left to bottom
right, GaussianMixture, KMeans, SpectralClustering, and
MeanShift algorithms were used for spectral clustering and
their visualization results were shown. Compared with fig.
5, GaussianMixture, KMeans, and MeanShift all have sim-
ilar problems, the transition state between the rainy spec-
trum and the sunny spectrum cannot be well distinguished.
For example, in the upper-left figure, some square data
points in the mixed cluster of rainfall spectra and non-rain-
fall spectra were identified as rainy-day spectra. The clus-
tering effect of SpectralClustering in the lower left is inef-
fective due to the high dimensionality of the data. By
comparing the effect with other clustering algorithms, the
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Figure 5. Comparison of energy spectrum clustering effects of different algorithms
BIRCH algorithm has better performance in spectral data o %
clustering in this paper. It can effectively separate v =
sunny-day spectra and rainy-day spectra according to spec- -
tral features, and due to the characteristics of the BIRCH al- -
gorithm, it can complete high-quality clustering of a large 06 — e
amount of spectral data using limited memory resources. = e
Also, the single-pass scanning method can minimize /O 04 =

costs and reduce the time consumption of each clustering.

Site history spectral cluster

We have selected historical spectral data from the
site in 2019, which were recorded every 5 minutes and
included 1024 channels of particle counts. There is a total
of 83882 valid data records. To reduce the data fluctua-
tion of the energy spectrometer, we averaged six consec-
utive sets of energy spectrum data. This extended the par-
ticle counting period of the instrument from 5 minutes to
30 minutes, resulting in a total of 16475 sets of valid data.
The PCA was used to reduce the dimensionality of the
spectral data from 1024 to 50, and then the BIRCH algo-
rithm was used for clustering analysis. The data was di-
vided into a sunny-day spectral dataset and a rainy-day
spectral dataset according to the clustering labels. The
clustering results are visualized in fig. 6. Through the
dimensionality reduction cluster analysis of the energy

0.2

0.0
0.00 0.25 0.50 0.75 1.00

Figure 6. Spectral clustering performance of a site's
historical data

spectrum dataset, it is divided into rainy-day spectra and
sunny-day spectra. The circular dots indicate sunny-day
spectral data, while the crosses indicate rainy-day spec-
tral data.

Anomaly detection algorithm
for local outlier factors

The key to density-based outlier detection meth-
ods is to assign a density value to each data point. The
main idea is that, for any given data set, if the points in
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its neighborhood are dense, it is considered a normal

data point, while if the points in its neighborhood are

far apart, it is considered an outlier. The threshold is
used to define whether it is an outlier. In density-based
anomaly detection methods, the local outlier factor

(LOF) [20-22] algorithm is one of the most representa-

tive methods. The relevant definitions of the LOF al-

gorithm are as follows:

— d(0, P): the distance between two points O and P;

—  the k™ distance dj (0) for point O is defined as fol-
lows: d; (O) = d(0O, P), and satisfy:

(a) there are at least & points not including O in the
set P' € C{x # 0}, satisfy d(O, P") < d(0, P)

(b) there are at most k£ — 1points not including O in
the set P' € C{x # 0}, satisfy d(O, P) < d(0, P);
the ™ distance of O, that is, the distance from the
k™ farthest point of O, as shown in fig. 7.

—  The k™ distance neighborhood, that is, the neigh-
borhood N (0) within the point O to dj (0), con-
tains all points within the #" distance of 0, includ-
ing those on the k™ distance. Therefore, the
number of k" neighbor points of O is | Ny (0)| > k.

—  According to fig. 8 the k" reachable distance from
point P to point O is defined as

4, (0,P)=max{d, (0),d(0,P)} (6))

The k' reachable distance from point P to point
0O is at least the k™ distance of point Q. The k points
closest to point O, have the same reachable distance to
point O, and they are all equal to d, (O)
— The local reachable density is defined as

Ird, (0)= 1 _ IN, (0)]
(ZPeNk(O) d; (O,P)j 2pren, 0 9 (O,P)
[N (0 (6)

Indicates the average reachable distance from all
points in the k" neighborhood of point O to 0. If point
O and the surrounding neighborhood points are in the
same cluster, then the reachable distance is more likely
to be a smaller d;, (0), resulting in a smaller sum of

Figure 7. The 5™ distance of point O

reachable distances, the greater the local reachable
density. If O is far away from the surrounding neigh-
bor points, then the reachable distance may take a
larger value d(O, P), resulting in a larger sum of reach-
able distances and a smaller local reachable density.

Local outlier factor

According to the definition of local reachable
density, when a data point is far away from other
points, its local reachable density is likely to be
smaller. The LOF algorithm determines whether a data
point is an outlier based on its relative density to its
neighboring data points, rather than its absolute local
density. Therefore, the algorithm performs well in sit-
uations where data density and distribution are differ-
ent or uneven. The local outlier factor is defined by the
local relative density. The local relative density is de-
fined as the ratio of the average reachable density of
the neighborhood points of point O to the local reach-
able density of point O [23-26] Right now

Ird(P)
PeN,©0) Ird(O)
N (0)

LOF(0)= ()

According to the definition of the local outlier
factor, the anomaly score of a data point fluctuates
around 1. If the anomaly score is less than 1, it indi-
cates that the data density near the data point is high,
and the probability of being an outlier is relatively low.
If the anomaly score is far greater than 1, it indicates
that point P is far away from other data points and is
likely to be an outlier.

Anomaly detection model of energy
spectrum based on the LOF method

The aim of anomaly detection for the station
spectrum data in this paper is to distinguish the spec-
trum anomaly fluctuations caused by non-environ-
mental factors under complex conditions. To achieve

Figure 8. Schematic diagram of reachable distance
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this, an anomaly detection model has been established
to detect and discriminate spectra with different clus-
ter distributions based on the prior discussion of clus-
tering of historical energy spectrum data.

Due to the particularity of the environmental
spectra of automatic stations, the probability of nu-
clear anomaly events is extremely low. For the histori-
cal data set of the current station, it can be considered
that there is no obvious nuclide anomaly event. In the
process of establishing the anomaly detection model
for the spectra, the lack of labeled abnormal spectra
makes it impossible to directly assess the effectiveness
of'the detection model. To address this issue, Gaussian
peaks are added to the actual spectrum to simulate the
spectrum anomaly fluctuations. The fitted Gaussian
peak shown in fig. 9, where the x-axis represents chan-
nel number and the y-axis represents particle counts,
has a count of 1000. The fitted spectrum data serves as
the abnormal data points, and the detection of abnor-
mal data points by the detection model is used as the
evaluation index of the model's effectiveness.

Due to the high dimensionality of energy spec-
trum data, which has 1024 dimensions, many tradi-
tional outlier detection methods are ineffective and are
affected by the curse of dimensionality. To overcome
this challenge, we chose the LOF algorithm to estab-
lish a spectrum anomaly discrimination model. Unlike
distance-based or density-based algorithms, the LOF
algorithm relies on the local outlier factor score, which
is based on the local relative density of data points and

Particle counts
A o @
& & o

N
o

<]
|

-5 0 5 10 15 20 25 30
Channel address

Figure 9. Fitting gaussian peak

Table 1. The algorithm steps of LOF

is less limited by dimensionality. The LOF method
provides a quantitative measure of the degree to which
an object is an outlier and can handle well even if the
data set has regions of different densities [27-32]. The
process of energy spectrum anomaly discrimination is
shown in tab. 1.

Analysis of anomaly detection
model results

The test datasets include a single weak peak test
dataset, a single strong peak test dataset, and a multiple
weak peak test dataset (with a single weak peak added
to the spectrum as shown in fig. 10, a single strong
peak added to the spectrum as shown in fig. 11, and
multiple weak peaks added to the spectrum as shown
in fig. 12). The effectiveness of the anomaly detection
model based on the LOF algorithm was tested using
these datasets. The LOF algorithm model was also
tested using the uncategorized dataset to verify if spec-
trum clustering enhances the ability of the model to de-
tect spectrum anomalies.

For each trial, 20 sets of spectra data were ran-
domly selected from the anomaly dataset and added to
the normal dataset. Each anomaly detection model was
utilized to identify the anomalous data points in the
test dataset, and the number of identified anomalous
points was used as the model evaluation metric. This
process was repeated five times The model directly
outputs the outlier score of this set of data. Therefore,
by sorting the outlier scores of the data set, the top 30
outlier scores were used as predicted abnormal data
points. The number of real abnormal data points
served as the model detection result. The results are as
follows in tab. 2 shows.

The LOF-based detection model successfully
identified over 80 anomalous data points in the single
weak peak, single strong peak, and multiple weak
peak datasets. Notably, it performed exceptionally
well in the single strong peak dataset, correctly identi-
fying 99 anomalous data points. Additionally, the per-
formance of the model was improved after clustering

The detailed process of the algorithm is as follows:
e Data: Spectrum data of the test set xy, ..., x,,

e Output: Local outlier factors for each spectral data
e Start:

e Finish

e Calculation parameters: Positive integer K (Used to calculate the k-th distance)

¢ Computes the Euclidean distance between each data point and other objects.
¢ Sort the distances, computing the -th distance and -th distance neighborhood for each data point.
¢ Calculate the local reachable density of each data point according to formula (4.2)

¢ Calculate the local outlier factor for each data point according to formula (4.3)

e The local outlier factor is used as the abnormal score of the data point, and sorted,
and the data point with a high abnormal score is the abnormal point
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Table 2. Dataset test results

Dataset 1* round 2" round 3" round 4™ round 5" round | Total count | Detection rate [%)]
Single weak peak 18 18 18 16 16 86 86
Single weak peak
(unclassified) 17 17 16 15 16 81 81
Single strong peak 20 19 20 20 20 99 99
Single strong peak 20 19 20 20 20 99 99
(unclassified)
Multiple weak peaks 18 20 17 18 17 90 90
Multiple wezk peaks 17 16 17 17 84 84 84
(unclassified)

the spectra data. By adding a fitted Gaussian peak to
the spectra data, the reachability distance between
neighboring data points increased, resulting in de-
creased local reachability density. However, the LOF
algorithm evaluates data points based on their relative
density to neighboring data points, rather than their ab-
solute local density. This allows the algorithm to per-
form well under conditions of imbalanced data distri-
bution and varying densities. Furthermore, the local
relative density is less affected by dimensionality con-
straints. Thus, even in high-dimensional data with
sparse distribution and minimal distance differences,

the local relative density can still accurately reflect the
degree of data outliers.

Energy peak resolution

The automatic station utilizes the SARA gamma
spectrometer to measure energy spectrums. Since the
relationship between particle energy levels and chan-
nel addresses can be approximately considered linear,
a multi-point linear regression can be used to obtain
this functional relationship. In laboratory experi-
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ments, the measured relationship between channel ad-
dresses and particle energy levels is as follows

y=04611x+4.2626 ®)

Due to the differences in performance between
energy spectrometers and the disparities in testing en-
vironments, the energy calibration of the station's en-
ergy spectrometer may deviate slightly from eq. (8).
However, the linear relationship between channel ad-
dresses and energy levels remains the same. The envi-
ronmental spectrum contains complex nuclide species
with low concentrations, and the resolution of the Nal
energy spectrometer is low. As a consequence, direct
spectral analysis of the spectrum proves ineffective,
and there are many similar data points in the measured
spectrum. Performing spectral analysis on each daily
spectrum data would result in a large number of repeti-
tive calculations. Therefore, spectral analysis is only
performed when the abnormality score of the spectrum
exceeds a certain threshold. Since the peak width cali-
bration curve of the energy spectrometer has not been
calibrated, only qualitative analysis of nuclides can be
performed. Considering the low instrument resolu-
tion, the results of spectral analysis supplement the en-
ergy anomaly detection and provide additional infor-
mation to the operators. The process of spectral
decomposition is shown in fig. 13.

The original energy spectrum is smoothed
through the average of multiple data sets. Then, ac-
cording to the reference energy spectrum determined
based on the BIRCH method, the energy spectrum
shown in fig. 14 is obtained after deducting the back-
ground. In the process of photoelectric spectral effect,
Compton effect, and forming electron pair effect, es-
pecially the Compton scattering effect, gamma ray en-
ergy tends to drift towards the low energy region of the
track, resulting in an increase in gamma energy in the
low energy region. Consequently, the spectral lines
overlap seriously. Therefore, there are higher energy
peaks in the low-energy region in the figure, but these
are the result of a large number of overlapping spectral
lines. However, there are obvious characteristic peaks
in the interval from 100 to 220 tracks, The number of
peak center sites is determined by peak searching. The
energy level of the nuclide can be determined accord-
ing to the energy scale curve, and the approximate type
of nuclide can be identified using the energy peak da-
tabase. The energy level of the region marked by the
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Figure 13. Flow chart of energy spectrum peak analysis

red line in the figure is roughly 0.5 MeV, which corre-
sponds to 2??Rn. The main daughter of radon, 2'#Pb, is
less obvious on the left side. While spectral analysis
provides information about the nuclide type, its accu-
racy is limited by resolution rate, fuzzy peak area
boundaries, high background leading to low recogni-
tion rates, or even misjudgment. Therefore, it should
be used as supplementary information for detecting
environmental energy spectrum anomalies to help nu-
clear emergency personnel make better decisions.

CONCLUSIONS

This article addresses the shortcomings of the cur-
rent analysis and utilization of monitoring data from au-
tomatic station detectors. To address this issue, the -SNE
method is innovatively adopted for energy spectrum
dimensionality reduction analysis under different meteo-
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rological conditions. The PCA-BIRCH algorithm clus-
tering model, which can perform high-quality clustering
on large datasets with limited memory resources, is then
used to conduct clustering analysis research on historical
energy spectrum data. The comparison results show that
the clustering characteristics of the energy spectrum
dataset can be displayed through the dimensionality re-
duction visualization method. The BIRCH algorithm has
a better clustering effect on the radiation monitoring en-
ergy spectrum data and can effectively separate the
sunny spectrum and the rainy spectrum according to the
energy spectrum characteristics, with minimal time con-
sumption.

Since existing energy spectrum analysis meth-
ods cannot identify abnormal fluctuations of the en-
ergy spectrum in complex environmental back-
grounds, or energy spectrum fluctuations due to
meteorological influences. This paper proposes an en-
vironmental energy spectrum anomaly detection
method based on local anomaly factors. Based on the
classification of the energy spectrum dataset, the local
density feature of the dataset is used to establish the
LOF algorithm and obtain the abnormal score of the
energy spectrum. The simulation results show that the
recognition accuracy of the LOF-based detection
model can exceed 80 % in the single weak peak, single
strong peak, and multiple weak peak datasets. This
confirms that the cluster analysis of the dataset can ef-
fectively improve the discrimination of abnormal data
points by the anomaly detection model. Furthermore,
it is verified that the clustering anomaly detection al-
gorithm can discriminate energy spectrum fluctua-
tions caused by non-environmental factors under com-
plex environmental background conditions.

The clustering-based anomaly detection algo-
rithm proposed in this paper could help to address the
interference of mixed monitored data types on subse-
quent anomaly detection and nuclear accident warn-
ings, providing technical support for nuclear emer-
gency decision-making.
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by JYEHIIYHT, Iyo JYEH®EJ, Llyar ®PENJYEH, Ilear XYEJJU, Jby CUHT'AO

HNCTPAXKUBABE METOJOM JETEKIIMJE AHOMAI/INJA EHEPTETCKOTI
CIIEKTPA 3A JNPXABHY KOHTPOJAY CTAIbA PAAUJAIIMOHOI MOHUTOPUHTA
KUBOTHE CPEIJUHE HA OCHOBY J10® AJITI'OPUTMA

Jp>kaBHO KOHTPOJIMCAaHEe ayTOMATCKe CTaHUIIE 32 Tpaheme paanjaioHOr OKPYsKeHa Cy BasKHU
o6jekTn 3a mpaheme KBamuTeTa M TPEHIOBA pajfiWjaliioHe cpefanHe. MebyTtnm, ananm3a n Kopuirheme
mojaTaka MOHHTOPHHTA Ca OBHX CTAHUIIA MMajy orpaHmyera. [a 6u ce pemmo oBaj mpobiem, 0Baj paj
mpepiaxke IPUCTYI KOjU KOPUCTU BUCOKOAMMEH3MOHAIHI METO/] BU3yelu3alyje nofgaTaka 3aCHOBaH Ha
mopeny kinacrepa cnekrpa t-SNE u PCA-BIRCH anroputMa 3a kitacugukanujy UICTOpUjCKUX ITOflaTaKka
criekTpa. Hakon Tora, ycrocraBibeH je Mofies ieTeKIuje abHOpMaTHAX (hIyKTyalnuja CIeKTpa OKOIWHE
3aCHOBaH Ha (haKTOPY JIOKAIHOT BAHPEIHOT (haKTOpa KaKo O ce moboIbIajia TUCKpUMHAHAI]ja (hakTopa
KOjU HUCY U3 OKPYKeHa KOjH y3pOKYjy aHOMalluje criekTpa. Pesynrartu ykasyjy Ha 3HadajHE pas3yuke y
arperanyjy CIeKkTpa MO PasIuIUTHM METEOPOJIOIMIKUM YCIOBUMA. ANITOpUTaM Tpymucama e(UKacHO
OJIBaja jacHe W KWIITHE BPEMCEHCKE CIIEKTPE HAa OCHOBY CIECKTPAHUX KapaKTEepUCTHKA, Y3 MUHIMAIHY
MOTPOIIKBY BpeMEeHa U CMalkbeHE CMETH-E Off ToflaTaka MeIoBHUTOT criekTpa. Kopucrehn kapakrepucruke
JIOKaJIHE TYCTHHE, YCIIOCTABIbEH je MOJEIN AeTeKIuje aHoMaluja, fofebyjyhu aGHOpMalIHU pe3yaTat
cBakoM crnekTpy. KommapaTuBHa aHanm3a mokasyje MOOOJbIIAHy pa3ABOjUBOCT MoOfesia JAeTeKIHje
aHoOMauuja 3a HeKJacu(uKoBaHe CKyNoBe nojaTaka. Hamr anropuram Tauno ueHTR(UKYje PIyKTyanmje
CIIEKTpa y3pOKOBaHe (paKTOpMMa KOjH HUCY Y OKPYKEHY YCpel CloXKeHe mo3anuHe, Hyfaehu BpemHy
TEXHUUKY TOJPIIKY 3a OCUTYpame KBAJIUTETa XUBOTHE CPEAMHE M JOHOIICHE OJJIyKa Yy CIydajy
HYKJIEApPHUX ONaCHOCTH.

Kwyune peuu: paoujayuora cpeouna, susyaaudayuja iiooaitiaxk,PCA-BIRCH anzopuitiam, aHasusa
Kaacuiepa



