Vol.
XXXVI, No. 4, Pp. 299-383
December 2021
UDC 621.039+614.876:504.06
ISSN 1451-3994
Back to Contents
|
Pages: 346-351
Authors: Ehsan Sadeghi, Mostafa Zahedifar, and Parasto Rezaii
Abstract
Satisfactory discrimination between the neutron and gamma components in a mixed neutron-gamma field is one of the most important objectives of neutron dosimetry. One of the common techniques for estimating gamma and neutron dose components in mixed neutron-gamma fields is the two peak method. This method has been applied using dosimeters such as LiF:Mg,Ti, but in the present work, a 6LiF:Mg,Cu,P dosimeter has been used, whose thermoluminescence sensitivity is much higher than the LiF:Mg,Ti dosimeter, and therefore, if appropriate results are achieved, it can drastically reduce the dose estimation threshold. Applicability of 6LiF:Mg,Cu,P for estimation of the gamma dose using the two peak method in a mixed thermal neutron-gamma radiation field was studied. The ratio of the area underneath the high temperature thermoluminescence glow peak to dosimetry peak of this phosphor in an Am-Be neutron field is 0.127, while this ratio in a pure gamma ray field of 137Cs is 0.039. The calibration curves were obtained by separately irradiating 6LiF:Mg,Cu,P chips with known gamma and neutron doses. Results show that 6LiF:Mg,Cu,P can be used to estimate the contributions of neutron and gamma doses in a mixed neutron-gamma field by using the two peak method.
Key words: thermoluminescence, 6LiF:Mg,Cu,P, dosimetry, two peak method, mixed field, neutron-gamma
FULL PAPER IN PDF FORMAT (489 KB)
|