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Deployment of digital technologies within a modern shift in cyber defense systems is essential
for protecting the energy production units. One of the important components of defense is
cyberforensics: once an attack has been detected to locate its origin. In this paper, a review of
well-known cyberattacks in nuclear facilities is provided, with the lessons learned leading to
the development of a machine learning approach implementing identification of internal at-
tacks in the facility's data networks. Our approach may be seen as one of the layers in a de-
fense-in-depth strategy that identifies if the attack comes from inside, which may result in
identifying faster the attacker's origin. The presented model exploits network packet exami-
nation to cast accurate predictions on detailing the origin of malicious network connections.
The approach fuses multiple mathematical functions within an artificial neural network to
provide a response in the form of 0/1, i. e., whether the attack is identified as internal or not.
The utilization of a variety of test cases is developed to explore the relevance and validity of the
predictive approach. The proposed implementation is examined with network data packet
variance, and the results obtained exhibit a highly accurate detection rate.
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INTRODUCTION

Defending the nuclear energy facilities against
any type of malicious attacks is a critical issue to se-
cure a sustainable future energy supply and retain the
feeling of safety to the public. Among many types of
attacks, cyberattacks are of special interest due to the
ubiquitous deployment of digital connectivity and in-
formation technologies. Concerning nuclear facilities,
such as nuclear power plants (NPP), cyberattacks are
becoming more frequent as instrumentation and con-
trol (I&C) systems are being transitioned from analo-
gous to digital technology.

The design of cyberforensic defense methods is
exceedingly more important as the number of attacks
against nuclear facilities increases in occurrence [1].
The nuclear defense systems within all NPP could be
an extremely serious condition and the remedies are
very important in conducting safe plant operations [2].

The research field of cyberforensics, more com-
monly known as digital forensics, for nuclear facilities,
is imperative due to the critical nature of the infrastruc-
tures being protected. As technology continues to ad-
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vance, the attack strategies against NPP are also becom-
ing more sophisticated [3]. Therefore, the design of an
intelligent cyber defense system to actively defend
against all cyber threats (known and unknown) and en-
hance the structure of defense-in-depth, is crucial for
the overall nuclear facility operation and security [4].
The US Department of Homeland Security has
recently reported that cyber hackers have been able to
exploit insecure vendors within the power industry to
gain access to privileged, air-gapped systems inside
America's electric utilities [5]. It is assumed that air-gap
measures are a sufficient defensive measure against
malicious intrusions inside critical systems. The vulner-
abilities for any given NPP exist on the networks of the
vendors who supply their technologies. If one of the
vendor's systems has weak points that hackers utilize to
develop attack plans, then the entire nuclear infrastruc-
ture has a higher probability of being attacked inter-
nally. As hackers begin to identify the vendors for US
utilities, the more likely an intrusion into critical sys-
tems is to happen. When a vendor is identified, conven-
tional tools including spear-phishing are used to enter
the computer networks. Once inside the vendor's com-
puter network, hackers will steal critical information
such as secret credentials and access to utility networks
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Figure 1. (a) Flow of information within the networks of
a NPP, and (b) interfaces between the networks

and operations. The physical representation of network
information architecture (information flow and inter-
faces) is detailed in fig. 1.

The cyberspace and information that exists be-
tween the NPP inner and business networks have ma-
jor vulnerabilities that have been exploited by cyber
attackers to develop specific cyberattack plans. The
information that exists about the NPP critical control
systems can be reached through attacking their busi-
ness networks and probing these networks for avail-
able information about the NPP [5]. The information
available on these networks is crucial for implement-
ing an internal cyberattack. If we consider that many of
the network servers being utilized within the NPP are
air-gapped, meaning that they are not connected to any
external networks, then it becomes apparent in which
areas, if any, this information can be located. The data
being collected includes but is not restricted to the Pro-
grammable Logic Controller (PLC) data such as serial
numbers, version numbers, timing executions, and ac-
tively running logic code [4]. This information has
been used in the past to conduct highly invasive inter-
nal cyberattacks against NPP. More importantly, is de-
termining whether the Linux operating systems are
conforming to the demands of the standards IEC
61513:2011, ISO/IEC 23360-1:2006, and ISO/IEC
27032:2012 [6].

A considerable method for developing an attack
of'this nature is by probing critical system information
from the vendor networks and deploying sophisti-
cated, customized internal cyberattacks that match the
exact PLC configurations for a given NPP [7]. There
exists the opportunity to develop an improved,
co-ordinated defense system that can identify whether
probes have originated internally on the network as
well as flag an anomalous connection packet on the
business networks. Cybersecurity assessment results
of industrial 1&C systems used in NPP are mainly
based on the assessment of expert judgment and do not
take into account all features of FPGA (i. e., Field-Pro-
grammable Gate Arrays) technologies [8] adopted in
the implementation of I&C systems [9]. When more
FPGA features are being assessed, there is a higher
probability that an attack can be identified and flagged
before any damages can be conducted.

The key challenges in digital forensics are now
being mitigated by combining artificial intelligence
(Al) tools and cyber systems. Another research

method of NPP surveillance includes utilizing electro-
encephalogram (EEG) signals analysis of plant
workers to describe the possibility of identifying a
non-initiating insider who has not yet committed an
action [10]. The EEG are a method for monitoring
electromagnetic signals in the brain, and with this data,
an algorithm can detect irregularities in signals. The
next paradigm in creating advanced cyberforensics
systems includes integrating Al with our current cyber
defense system models [3]. The capability of an Al
system to interpret real-time data flow on a network
will increase the defense system's ability to detect ma-
licious connections to the business networks and add
one more layer in the defense-in-depth of information
systems in NPP [11-13]. Given that intrusions are
co-ordinated and unique, there is the prospect to im-
plement an Al digital forensics system that analyzes
network packages in real-time and can differentiate
between malicious behavior and normal activity on the
network. The information load across the network in-
cludes high traffic and high-speed connections. The
data flow of the network is currently being surveyed
by automated defense systems that require human in-
tervention for surveying networks, but even these are
not optimized for high traffic volumes [14]. Therefore,
it is beneficial for newer cyber defense systems to de-
velop an intelligent system that compliments the secu-
rity system by analyzing high-speed data flow across
all business networks.

The important challenges currently present in
cyberforensics are being addressed by utilizing pro-
gramming tools such as Al Specifically, the two meth-
ods of cyber defenses being analyzed are distributed de-
nial of service (DDoS) attacks and intrusion detection
and intrusion prevention systems (IDPS) [15, 16]. The
DDoS cyberattacks' main goal is to overload a server by
coordinating infected computers (botnet) to directly
take up the computational resources of the server. Gen-
erally, DDoS attacks occur to produce weaknesses in
cyber architecture for future attacks and to cause dam-
ages in the form of economic and resource disruption.
In particular, in IDPS technology, one of the main chal-
lenges is setting up and configuring IDPS tools to cor-
rectly identify unauthorized access to a network. Cur-
rently, IDPS generates many false alerts or false
positives [3]. The methodology is as such; a database is
provided with key malicious signatures that are com-
pared to all network connections being made in the data
flow of the network. Once one of the key signatures is
detected, the system will notify the users of the mali-
cious connection [3]. Co-ordinating a defense system
with databased key detection also provides certain vul-
nerabilities, mainly internet protocol (IP) masking and
subnet masking. Notably, malicious connections to the
network may not be flagged due to being masked with a
key signature from the acceptable connections data-
base. Also, there are anomaly-based detection systems
that assess the behavior of the network and predict
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anomalous connections and determine whether they are

a threat to the network. Utilizing machine learning with

anomaly-based detection systems provides an efficient

method for defending NPP networks [17].

In this paper, a new intelligent forensic model for
identifying internal cyber threats to NPP networks is
presented and discusses the forensics model for opti-
mizing the identification method for cyberattacks on
the NPP business networks. The proposed forensic
model utilizes an artificial neural network as the mean
of analyzing network packet data and distinguishing
internal malicious connections for network safety. The
contribution of this paper contains:

— reviewing of the world around internal cyberattacks
conducted against nuclear facilities,

— development and application of neural network
model for analyzing network traffic data,

— amodel for utilizing network data to predict mali-
cious connections that come from inside the nu-
clear facility (internal attacks in NPP), and

— testing of the model on real-time network data
sets.

The aforementioned processes have laid the foun-
dation for the development of an Al model implementa-
tion that provides an optimized solution for identifying
malicious internal connections that are dangerous to NPP
networks. The concept of classification of anomalous be-
havior has been previously applied to identifying key
features of data and characterizing the data into labeled
categories. Thus, we propose that a cyberforensics model
implemented by an Al system will increase active de-
fenses and post-attack analysis by identifying internal
network connections attacks.

The roadmap of this paper is as follows. In the next
two sections, a review of known internal cyberattacks at
nuclear power plants is given, while the developed meth-
odology is presented. Following is a section where the
methodology is tested, and the obtained results are dis-
cussed. The last section concludes the paper by empha-
sizing its main points.

SURVEY OF INTERNAL CYBERATTACKS
ON NUCLEAR FACILITIES

In this section, we review the origins of critical in-
ternal cyberattacks conducted against NPP and move to
present a brief examination of the STUXNET industrial
attack on Iranian Nuclear Facilities. The goal is to ex-
plain the effectiveness of the attackers' preferred method-
ology for conducting an internal cyberattack [17]. It is
important to observe the specific methods utilized by the
attackers to obtain supervisory control and data acquisi-
tion (SCADA) information from computer systems that
are air-gapped within nuclear facilities [18]. Establish-
ing, implementing, and maintaining the cyber security
program is accomplished by using formal assessment
methods conducted by qualified staff at nuclear power

reactors acting under the authority of the site's approved
policy and the supervision of senior site management
[19]. Therefore, critically reviewing the mitigation plan
utilized by the facility will be instrumental in the devel-
opment of more robust cyberforensics systems for nu-
clear power reactors. This survey of internal cyberattacks
will deliver signature information on the lessons learned
from previous cyberattacks and enable the ability to de-
velop a digital forensics methodology for mitigating any
future cyber threats.

Ignalina

Ignalina Power Plant is the first known attempt
of an internal cyberattack against a nuclear facility.
The control system network was affected directly by
an internal injection of malicious content with the in-
tent to harm the facility. The methodology for the at-
tack included distributing the hazardous software
through the insertion of a universal serial bus (USB)
drive onto a command control system computer. De-
livery of payload by USB is a considerably efficient
method for injecting malicious software onto targeted
computer systems. Even where nuclear facilities are
air-gapped, this safeguard can be breached with noth-
ing more than a flash drive [20]. Critical system sabo-
tage, as well as substantial economic losses for the
Ignalina nuclear facility, were the immediate results of
the cyberattack. The development of newer technolo-
gies within the nuclear field has standardized the im-
plementation of segmenting the control networks to
slow the effects of an internal injection.

Stuxnet

The STUXNET is a sophisticated malware de-
signed to obtain supervisory control and target Siemens'
SCADA control software over an entire industrial con-
trol system (ICS). It was discovered in June 2010 and is
widely suspected of targeting Iran's uranium enrichment
program [21]. The virus was introduced by plant person-
nel into a control system computer via USB. The delivery
of the software was highly effective, and the injection
was successful. Detection of the virus was difficult due to
the advanced programming techniques used to conceal
itself from users and anti-malware software [22]. Virus
BlockAda, an antivirus company based in Belarus, dis-
covered the Stuxnet worm after the company receives a
sample of malware causing a computer in Iran to contin-
ually reboot itself [23].

Once infected, Stuxnet spreads via multiple tra-
jectories towards control system PLC, through other
control system computers connected to the local net-
work and across entire ICS networks [14]. The worm
utilizes probed password information to access Win-
dows operating systems that run the WinCC and PCS 7
programs. These affected PLC programs mutate in-
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structions that manage industrial plants. About the Ira-
nian facilities, the PLC programs were modified by
setting the centrifuge rotors at too-low and too-high
frequencies resulting in significant slow-downs and
speed-ups [24]. Through the exploitation of digital
vulnerabilities in industrial systems, multiple nuclear
facilities were similarly affected in Iran [25]. The con-
centration of information needed to develop Stuxnet's
main program architecture exists on the vulnerable
network space between nuclear facilities and their
vendor networks.

Critical system information is needed to develop
PLC-specific version updates that conceal changes to
control system monitors. The hackers begin by identi-
fying the vendors of the utility company which has
special access to sensitive networks [5]. The vendors
are targeted with conventional methods such as
spear-phishing, a social-engineering technique aimed
at creating vulnerabilities by utilizing the flaws in hu-
man error. Generally delivered by email, malicious
content is aimed to prescribe familiarity with the user
to deceive decision-making processes [26]. Such so-
phisticated phishing emails are difficult for email pro-
tection systems to detect [27]. Once network probes
have been enabled, attackers can run software diag-
nostics on equipment, update software, and affect
other services for critical systems [5].

Bradwell nuclear power plant

An employed guard conducted a cyberattack in
June 1999, at the Bradwell Nuclear Facility located in
the United Kingdom. The employed guard of
Bradwell NPP, altered and destroyed data on an inter-
nal server. The attacker of the Bradwell facility man-
aged to gain direct access to an internal server and
while connected to the facility server, was able to alter
and destroy secure database information [28]. This
was completed entirely from inside of the facility. The
employee attempted to sabotage secure database in-
formation and was believed to have hacked into
Bradwell's computer system to alter sensitive informa-
tion. Information deletion of this mode can cause a
system-wide error. It is unclear what documentation
was destroyed, but the information deleted was crucial
for conducting business within the NPP.

Despite the intrusion, the automated access con-
trol systems within the facility were able to shut down
due to a high-level security alert triggered by the attack.
The security monitoring of crucial servers and systems
was instrumental in actively defending against this in-
ternal cyberattack.

Energy future holdings

Comanche Peak NPP owned by energy future
holdings (EFH), is located in Texas, United States. In
March 2008, an employee attempted an internal
cyberattack against the facility. The EFH company

had fired an employee based on performance reasons
but had forgotten to shut off their virtual private net-
work (VPN) access to the facility network [29]. Using
this account, the disgruntled employee managed to log
onto the corporate network and began emailing out
proprietary data to the personal email account linked
to the employee. While connected to the private net-
work, the employee could modify and delete files on
the server. Also, an email was sent to an engineering
group asking about the safety of the nuclear reactor
when increasing to 99 % capacity output.

The EFH management system was directly af-
fected and rendered inoperable, resulting in being un-
able to accurately forecast the parameters necessary to
operate the business on the following day [30]. Damage
against the NPP was purely financial and led to more
strict guidelines on handling the operations for firing an
employee. Overall, autonomous systems were able to
identify and stop any further damages from occurring.

Lessons learned from
internal cyberattacks

The review of the internal cyberattacks leads to
drawing some conclusions. In particular:

— Typically, internal attacks target specific users or
employees of a company. In particular, the em-
ployees and specific users that belong to nuclear
facility vendors are at an increased probability of
attack considering the vulnerabilities presented to
the critical system infrastructure.

— Itisincreasingly important to develop a surveying
method for monitoring signature anomalous be-
havior on these networks.

— Mitigating a cyber threat begins with the develop-
ment of a digital forensic methodology capable of
distinguishing malicious connections to vendor
and business networks.

The following section is a detailed methodology
for an Al system for surveying and identifying anoma-
lous connections to nuclear vendor networks.

CYBERFORENSICS METHODOLOGY

Problem statement

The limitations of implementing Al with digital fo-
rensics stem from the ability of a system to acquire the
data sets for training, analyzing that data, and performing
computational functions to predict behavior. The main
framework for a discussed model includes smart acquisi-
tion, smart analysis, and smart presentation [30]. The
smart acquisition phase is particularly important due to
the limited availability of NPP data sets, and its impor-
tance in the [&C components of the NPP [31]. Moreover,
another limitation of data acquisition is the size of the
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training data sets being utilized by the artificial neural
network (ANN). While true that there are restrictions
when it comes to training data set size and dependency,
the cyberforensics model proposed in this paper is capa-
ble of constructing an identification method that utilizes
reduced datasets for training.

Artificial neural network for
forensics model

In this section, the digital forensics system for
NPP that implements an ANN approach is presented.
The proposed ANN follows an expertly trained archi-
tecture, which is depicted in fig. 2, therefore, the
datasets being utilized will consist of pre-process data
preparation components as the main system inputs.
The network inputs are developed using two methods:
— expert constructed database of known safe con-

nections, and
— network connection data packets containing all
network connection information.

After calculations are completed, the outputs
from the network are loss, accuracy, and probability of
internal connection.

The aim of the digital forensics ANN is to iden-
tify internal malicious connections from general net-
work traffic datasets. The system utilizes network
packet database information to train the neural net-
work to identify malicious connections that exist on
the current network data flow. The goal of the neural
network is to survey all network connections through a
digital analyzer and determine the probability of a ma-
licious connection being identified. The output of the
ANN consists of a probability between the values of
0.0 and 1.0, where 0.0 denotes absolute certainty that
an internal malicious connection has not been identi-
fied, while 1.0 denotes absolute certainty that one has
been identified. Given this information, data analytics
teams can easily identify cyber probes phishing for
critical information. As the system is unable to inter-
pret network packets directly from the network, an ex-

tra data preparation step is necessary for implementing
this solution.

To obtain the necessary information from network
packets, a network packet analyzer software is utilized to
develop the input datasets for the neural network data-
base. The network packet information is gathered and
analyzed using third-party software called WireShark, a
free and open-source packet analyzer [32]. This program
is given IP network packets as input and then outputs the
detailed packet information in a spreadsheet format.
Once all network packet data is converted to a readable
input for the neural network, it is possible to train the net-
work on this data set. The inputs for the neural network
contain all key signature information developed from the
network packets. After training the neural network, the
model allows for the detection of benign and unknown
connections to a network by outputting a probability of a
malicious connection being made to the online network.

Forensics method

The IP network packets are organized in a man-
ner that is not ideal for neural network interpretation.
The data within the network packet must be converted
from its original form into an excel data table to ensure
accurate data input. The packet contents being sent
and received across the network are composed of both
a header and payload.

In particular, the system we are proposing uti-
lizes the transport control protocol (TCP) information
that resides within every IP packet [32]. As the net-
work devices produce network packets, a network an-
alyzer is utilized to interpret and convert all packet in-
formation into a readable input source for the neural
network. An example of the WireShark output is pre-
sented in fig. 3.

WireShark is a powerful network analyzer that is
used as a data preparation tool for the TCP information
stream being received on the network. This is accom-
plished by analyzing the payload for each IP packet
and developing a unique features data table. Once the
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Transmission Control Protocol, Src Port: 443, Dst Port: 12158, Seq: 0
Source Porl: 443
Destination Port: 12158
593 ©.001035 178.42.92.20 175.84.158.214 TCP
594 0.001038 169.107.219.73 173.214.39.173 TCcP 14—
595 @.0e01e39 117.164.144 .24 136.185.64.41 TCP 14—
e S e e Sy L e e L B -
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network data is available in a spreadsheet format, we
then convert this table into a comma-separated values
file (CSV). The information presented in fig. 4 and fig.
5 is the semi-final format of the data inputs for the neu-
ral network before transferring into a CSV.

All data collected for the training and testing of the
neural network was directly obtained through the Center
for Applied Internet Data Analysis (CAIDA) database.
The specific data set that was utilized is the CAIDA
Anonymized Internet Traces Dataset 2008 provided by
the CAIDA official organization website [33]. From this
dataset, specific location-based IP packages were con-
centrated to represent similar connections of a business
on alocal network. The training data directly coordinated
with a series of local network connections that directly
correlate with network packets that were sent and re-
ceived in a localized network area. Also included in the
data training set was another series of non-localized con-
nections representing network packets that did not origi-
nate within the local network. The information included
within the packet data table includes the source, destina-
tion addresses, acknowledgment number, flags, length,
the sequence number, TCP header length, window data,
checksum, and actual user data.

The neural network relies on an expertly con-
structed database containing the information included
within the packet data tables derived from the network
connections. Data tables are constantly updated with

safe and reliable connections that have been made on
the network previously. Both the training data and the
testing data exist in this database as inputs for the Al
model. The inputs for the neural network are directly
delivered via database and data preparation methods
are conducted on the data before entering the database.
All data tables are converted to comma split files that
are ideal for neural network training and interpreta-
tion. All information delivered from WireShark is
stored and managed by database programs. To main-
tain a consistent interpretation of the network packet
data, each connection must be divided into equal parts.
Meaning that each IP address is divided into three
parts and then maintained through its entry in the table
within the database. This guarantees that each data
packet that is sent into the database can be read by the
neural network as an input variable with multiple
nodes analyzing each part of the connection.

Our model utilizes an ANN [34] with three lay-
ers as depicted in fig. 6. Each layer utilizes dynamic
activation functions to map the input nodes' values to
their outputs. This model is developed with two types
of non-linear activations including the rectified linear
unit (Relu) and sigmoid activation functions, whose
respective analytical functions are given below:

0 forx>0
x forx<0

f(X)={ (M
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Figure 6. Cyber forensic neural network layer architecture with data table

Input/ oo Source Destination
Output IP Address Subnet Mask Source Port Destination Sequence perinbes Addiass Ack. Number
1 192.168.1.7 255.255255.0 44528 433 10.224.50.136 10.22450.71 1

Figure 7. Data table for the ANN input layer
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where x is the input to the function and e is the expo-
nential term [34]. These particular activation functions
are being chosen because of the observation driven on
the desired results on a set of validation data. The data
is non-linear as well as the correlations being non-lin-
ear, therefore we expect the inputs and outputs to have
non-linear results.

The input layer of the ANN consists of 20 input
nodes that require the input data entries to be main-
tained by the database and separated equally by requir-
ing a pre-processing technique called CSV data array
input arrangement. The input data for each node, as
shown in fig. 7, include such information as IP ad-
dresses for the source and destination computers and
formats them into equal sections such that each node ac-
counts for only a particular section of each network
packet. The dataset being used as inputs by the neural
network program splits the data into the target and data
fields. The target is what correctly distinguishes the dif-
ference between an internal and external connection be-
ing benign or anomalous. Each data part is divided into

equal and normalized decimal values ranging from 0.01
to 0.9 for each corresponding input node. Normalizing
each data member for neural network input nodes is es-
sential for utilizing the sigmoid function within the mul-
tiple layers of the model. Normalization functions of the
data inputs include the NumPy library that is available
through open-source software — written for the Python
programming language. These functions add calcula-
tion support for large, multi-dimensional arrays and
matrices to return the data as an array. The preprocess-
ing library included in the scikit-learn package, a free
software machine learning library for Python (devel-
oped by David Cournapeau), provides several common
utility functions and transformer classes utilized for
supporting machine learning programs. The function,
MinMaxScaler() being part of the preprocessing li-
brary, is a common requirement to normalize the data
into a format that is ideal for the neural network inputs.
The number of inputs and nodes utilized is identical for
every connection made on the network. Generally, the
information contained in the input nodes would be of
correct separation and format due to the preprocessing
steps that preceded the data being input into the neural
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network. After the Relu function is activated on the in-
put layer, the output from these nodes is sent into the
hidden layer.

The second layer in the neural network is the hid-
den layer that consists of 18 nodes (i. e., neurons).
Node quantity was decided based upon generated out-
put from the neural network. Maintaining the highest
level of accuracy and lowest total loss of the function
played essential roles for initializing the hidden layer
with 18 nodes. The Relu activation function works on
the data being input into the hidden layer and is consid-
ered the most used activation function when designing
a convolutional neural network or deep learning
model. The activation function does not have a curved
shape to its slope as compared to the sigmoid function.
Instead, the Relu function utilizes a half rectified lin-
ear function which has an output between 0 or 1 for
each input. Also, any input values into the hidden layer
that approach negative values are immediately set to a
value of 0. In our model, the data inputs from each
layer should never reach below the value of 0. The out-
put values from the hidden layer nodes are sent as in-
puts into the output layer.

The third and final output layer consists of one
node that determines whether an internal connection
has been made that is not recognized as safe. The out-
put from the neural network is a value between 0 and 1
that determines the probability that a particular con-
nection was abnormal and unsafe in comparison to the
database connections.

The final layer consists of a sigmoid activation
function that determines the value that the output will
take. The sigmoid activation is especially used for
models where we have to predict the probability as an
output. This is due to the probability of anything exist-
ing only between the range of 0 and 1. The sigmoid ac-
tivation function S (x) is essential because it provides
an efficient mathematical determination for the proba-
bility values being output from the final layer. Besides,
the output layer takes the probability value computed
by the sigmoid activation function and comparesitto a
threshold value 7= 0.5.

When the probability value is equal to or above
the threshold 7, then the output layer provides a value
of 1 indicating that the connection being analyzed has
a higher probability of originating internally on the
network. In the case that the probability value is less
than 0.5, the output layer provides a value of 0 indicat-
ing that an internal attack has not been detected. The
detection function D(x) is given below:

1, if >
D(x)={’ =0 G)
0, if S(x)<0
where D(x) represents the forensics function output
for the input data x, and S(x) is the activation function
of our neural network model (as explained earlier).
For compilation and training of the neural net-
work our model utilizes the Adam optimizer [35],

which is used with a learning rate of 0.2 and a binary
cross-entropy loss function that outputs over an accu-
racy metric. For training the model we utilize a batch
size of 50 data points based on standardized computer
performance. Also, this model has been programmed
to train with 200 epochs. This was determined by ob-
serving the training results and optimizing the model
for the highest accuracy. By graphing the training and
testing data against the number of epochs, it was possi-
ble to choose an ideal amount for fitting the model to
predict the anomalous behavior of the suggested test-
ing data.

TESTING RESULTS

In this section, the presented ANN cyberforensic
system is applied to the test set comprised of network
connections that are depicted previously in figs. 4 and
5. Each of the network connections is divided into
equal and different parts that were discussed in the pre-
vious section, e. g., source and destination 1P ad-
dresses, acknowledgement number, subnet mask,
source port, and sequence number. The test set is con-
structed using the datasets previously discussed within
the previous sections. Each dataset consists of 150 net-
work connections ranging from internal to external
connections being made on the network. The forensic
system model experiment was conducted by testing
the outputs of known connections against the predic-
tion model.

Due to the limited number of available datasets,
we have divided the dataset into training and testing
data by using 10 different ways to split them. It is ex-
pected that every run on a different portion of the
dataset will provide different output results. To over-
come the hurdle of the limited number of available
datasets, while extensively testing our methodology is
a larger variety of data, we have divided the dataset
into training and testing data by using 10 different
ways to split them. Every case is run 10 times and the
main statistics of the results are obtained: mean and
standard deviation. This approach is known as the
K-Fold cross-validation testing [34] presented in fig.
8, wherein our case K = 10.

The utilization of K-fold cross-validation testing
is detrimental to obtaining the mean and standard devi-
ations of the resulting neural network. It is commonly
used as a statistical method to estimate the skill of ma-
chine learning models. Also, the results from the
K-Fold cross-validation testing were applied to com-
pare and select the correct model for our given predic-
tive modeling problem. The K-Fold procedure has the
main network components from the dataset separated
into groups. The number of groups utilized in our anal-
ysis was 10 equal splits across the dataset. Also, the
batch size defined for each fold is set to split the infor-
mation as 80 % for training and 20 % for testing data.
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g the current network data flow. The model is based on
: the use of ANN to maintain surveillance over real-time
7 network data flow. The goal of the neural network is to
3 z survey all network connections through a digital ana-
. lyzer and determine the probability of an internal mali-
:3 cious connection being identified.
- The proposed ANN model has been tested in a set
0

Figure 8. Accuracy vs. fold

This was performed resulting in a less biased estimate
of the model's skills. The K-Fold cross-validation was
developed using the scikit-learn library that provides
an implementation that will split the given data sample
equally. Within the scikit learn library, the function
kFold was called to perform the functions needed for
K-Fold cross-validation.

Accuracy for the predictive model maintained
an efficient average of 81.76 %. This details the ability
of the forensic system to accurately predict correct
outputs on different test datasets. As seen in fig. 8, the
accuracy over the multiple folds has a minimum accu-
racy of 55.5 % and a maximum accuracy of 94.7 %.
Overall, the accuracy of the forensics system manages
to detect internal connections with high accuracy and
dependency.

The results have shown that generally there are
model optimizations available to increase the predic-
tion accuracy and decrease system loss for the neural
network forensics model. Fortunately, the existing pa-
rameters for prediction models detail that this model's
accuracy developed through training is significant
enough to utilize for accurately predicting network
packets in NPP system traffic.

CONCLUSIONS

In this paper, the importance of internal
cyberattacks in nuclear facilities was emphasized by
providing a review of all the well-known attacks of this
type. In addition, lessons learned from the review led us
to the development of a cyberforensics model for NPP
that implements an ANN approach as presented in the
current paper. The ANN forensics aims to designate
whether the detected attack comes from internal mali-
cious connections based on general network traffic
datasets.

Our methodology was developed for specifi-
cally advancing the search for the source of a
cyberattack inside of a nuclear facility. By having con-
vincing evidence that the cyberattack is from an inter-
nal network connection, then the forensics search for it
will be much shorter and the problem mitigated with
minimum damage loss. The system utilizes network
packet database information to train the neural net-
work to identify malicious connections that exist on

of 150 real-world network patterns. Simulations of net-
work traffic analysis and behavior were done with the aid
of randomizer processes that provided equal data imple-
mentation opportunities. Obtained results support the be-
lief that the ANN forensics system provides accurate de-
tection of malicious connections to the internal networks
of the businesses that support NPP functionality — i. e.,
the average accuracy in 1- fold testing was equal to 81.76
% -. Furthermore, the proposed system is fully autono-
mous and requires no human intervention at any stage
other than data input, while being computationally inex-
pensive.

As the technologies of the current cyberspace will
continue to advance, the benefits of utilizing forensics
systems to actively locate the origin of cyberattacks will
become more apparent [36, 37]. An advantage of the pre-
sented approach is the use of ANN to locate whether the
attack is internal or not may significantly reduce the time
to identify the attacker by restraining the suspects within
the nuclear facility premises.
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Bpangun M. KAMITIOC, Munruaguc ATAMAHNOTHUC

MNPEIIEd YHYTPAIIILUX CAJBEP HAIIAJA Y HYKIIEAPHUM
OBJEKTUMA U BEHITAYKUN HEYPOHCKMN MPEXHU MOJEJ 3A
CITIPOBOLEILE YHYTAPILE CAJBEP ®OPEH3MKE

[TpuMena TUTUTATHIX TEXHOJIOTH]ja Y OKBUPY MOAEPHOT pa3Boja y cucTreMumMa cajoep ondpane
OJl CYHITHHCKOT je 3Hadaja 3a 3alITHTy MOCTPOjeha 3a MPOU3BOAY eHepruje. JeaHa of BasKHUX KOM-
MIOHEHTHU 0J16paHe je cajOep popeHsuKa: Kajja ce jefIHOM OTKpHje Hamaj, 1a ce YTBPAU HBETOBO nopekJio. ¥
OBOM pajiy AaT je Iperiej HO3HATUX cajoep Halaja y HyKJeapHIM 00jeKTHMA, Ca IOyKaMa U3 BHX KOje Cy
AlOBEJIE 10 pa3Boja MPUCTYIIa MAIIHCKOT Y4eHa KOji NPUMEbYje HICHTH(UKAIHU]Y YHY TPALIbLUX HAIa[a y
MpeskaMa noparaka o6jekra. Ham npuctyn Moske ce cMaTpaTH jelHIM Off CJIOj€Ba y CTpaTeTHju IyOHHCKe
of0paHe Koja ujileHTU(UKYje [a J je Hanaj U3HyTpa, IITO MOXKe pe3yITUpaTH OP3KOM UIEeHTU(DUKALUjOM
nopekiia Hanajayva. [IpefcraB/beHn MOJIENl KOPUCTH UCIUTHBAKE MPEKHUX IakeTa fa O a0 TavyHa
npeaBubama 0 AeTasbMMa MOpEKIa 3IIOHAMEPHUAX MPEKHUX Be3a. [IpucTyn cmaja Buille MaTeMaTHYKHX
¢yHKIMja YyHYTap BEeIITauKe HEYPOHCKE MpeKe Jla Ou mpykuo ofrosop y oonuky 0/1, Tj. fa nu je Hanaj
nAeHTH(UKOBAH Ka0 YHYTPAIILH WK He. Y NoTpeba pa3HUX PecT caydajeBa pa3BHjeHa je 3a HCTPaskKNBambe
peNeBaHTHOCTH ¥ BaJbaHOCTH IPEIUK TUBHOT Npuctyna. [IpeyioxkeHa npuMeHa UCINTYje ce ca BapujaHCOM
MpEXHOT ITakeTa MofiaTaka, a JOOMjeH! pe3yITaTH MOKa3yjy BUCOKY TauyHy CTOIY OTKPUBAbA.

Kmwyune peuu: cajoep cuzZyprocit, ouzuiiaaia ¢hopen3uka, HyKkaeapHa eaeKiipana, YHypautbl Haiao,
HeypOHCKa Mpexca




