NT & RP Journal
THE SENSITIVITY ANALYSIS FOR APR1400 NODALIZATION UNDER LARGE BREAK LOCA CONDITION BASED ON MARS CODE
......: info......: history......: editorial......: archive......: for authors......: subscription
Image NTRP

Vol. XXXII, No. 1, Pp. 1-114
March 2017
UDC 621.039+614.876:504.06
ISSN 1451-3994

Back to Contents

 


Pages: 10-17

Authors:
Hyung-Wook Jang, Sang-Yong Lee, Seung-Jong Oh, and Woong-Bae Kim

Abstract

The phenomena of loss of coolant accident have been investigated for long time and the result of experiment shows that the flow condition in the downcomer during the end-of-blowdown were highly multi-dimensional at full-scale. However, the downcomer nodalization of input deck for large break loss of coolant accident used in advanced power reactor 1400 analyses are made up with 1-D model and improperly designed to describe realistic coolant phenomena during loss of coolant accident analysis. In this paper, the authors modified the nodalization of MARS code LBLOCA input deck and performed LBLOCA analysis with new input deck. From original LBLOCA input deck file, the nodalization of downcomer and junction connections with 4 cold legs and direct vessel injection lines are modified for reflecting the realistic cross-flow effect and real downcomer structure. The analysis results show that the peak cladding temperature of new input deck decreases more rapidly than previous result and that the drop of peak cladding temperature was advanced by application of momentum flux term in cross-flow. Additionally, the authors developed a new input deck with multi-dimensional downcomer model and ran MARS code with multi-dimensional input deck as well. By using the modified input deck, the Emergency core cooling system by-pass flow phenomena is better characterized and found to be consistent with both experimental report and regulatory guide.

Key words: LBLOCA, PCT, ECC by-pass, MARS code, multi-dimensional, nodalization

FULL PAPER IN PDF FORMAT (2.62 MB)

Vinča Institute of Nuclear Sciences :: Designed by milas :: July 2007
Operated by acapanic :: Last updated on June, 2017