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The stability analysis of a nuclear reactor is an important aspect in the design and operation of
the reactor. A stable neutronic response to perturbations is essential from the safety point of
view. In this paper, a general methodology has been developed for the linear stability analysis
of nuclear reactors using the lumped reactor model. The reactor kinetics has been modelled
using the point kinetics equations and the reactivity feedbacks from fuel, coolant and xenon
have been modelled through the appropriate time dependent equations. These governing
equations are linearized considering small perturbations in the reactor state around a steady
operating point. The characteristic equation of the system is used to establish the stability
zone of the reactor considering the reactivity coefficients as parameters. This methodology
has been used to identify the stability region of a typical pressurized heavy water reactor. It is
shown that the positive reactivity feedback from xenon narrows down the stability region.
Further, it is observed that the neutron kinetics parameters (such as the number of delayed
neutron precursor groups considered, the neutron generation time, the delayed neutron frac-
tions, etc.) do not have a significant influence on the location of the stability boundary. The
stability boundary is largely influenced by the parameters governing the evolution of the fuel

and coolant temperature and xenon concentration.
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INTRODUCTION

The stable neutronic response of a nuclear reac-
tor is one of the important requirements for the safe re-
actor operation. During the course of its operation, the
reactor is subjected to many intentional or uninten-
tional perturbations which tend to change the rector
power from its steady operating value. These pertur-
bations include the movement of the reactivity control
devices, changes in the coolant poison concentration,
fluctuations in the coolant flow, variations in the
power demand etc. In response to such perturbations, a
stable reactor returns back to the steady-state. If the re-
actor is not stable, it moves away from the steady-state
following a perturbation and this may lead to un-
wanted deviations in the safety parameters or even
lead to accident conditions if not controlled. There-
fore, thorough analysis of reactor stability is necessary
to demonstrate its ability to withstand the reactivity
perturbations.

Point reactor kinetics has been conventionally
used for the stability analysis of reactors [1, 2]. In the
present work, a general methodology has been devel-
oped for the linear stability analysis of nuclear reac-
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tors, where in addition to the fuel and coolant tempera-
ture reactivity feedbacks, the xenon reactivity
feedback has also been included. A methodology has
been established for identifying the stability region of
anuclear reactor, i. e., for identifying the region of per-
missible values of reactivity coefficients for stable op-
eration. The equations governing the evolution of re-
actor power, fuel and coolant temperatures and xenon
reactivity are based on the point reactor model. These
equations are linearized considering small deviations
around the steady operating state. The characteristic
equation of the system is obtained and used for identi-
fying the stability region. This methodology has been
illustrated for a typical pressurized heavy water reac-
tor (PHWR). The stability boundary has been identi-
fied for this reactor. The influence of point kinetics pa-
rameters and feedback mechanisms on stability of the
reactor has been studied. The role of xenon reactivity
feedback on the stability of PHWR is brought out.

MODELLING

The lumped model representing the transient evo-
lution of the reactor has been used in the present study
for analysing the stability of the reactor core i. e., the
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equations governing the neutron kinetics, reactor ther-
mal hydraulics and xenon dynamics are independent of
space. This approximation simplifies the calculations
while incorporating all the necessary physical aspects
of reactor dynamics. Although it does not address the
spatial effects, it is useful for the quick assessment of
global stability aspects of nuclear reactors.

Reactor model

The neutron kinetics is modelled through point
kinetics equations with six groups of delayed neutron
precursors

P _(p=P,, S
D P A.C. 1
dt ( A j +i§1 i o

d¢; _Bi

d A

The reactivity p, among other things, depends on
the cross-sections, reactor geometry and flux distribu-
tion [3]. In general, it is a complex function of reactor
power. Its presence in eq. (1) introduces a non-linearity
and the equations need to be solved numerically. How-
ever, the equations can be linearized by considering
small perturbations in the variables around their equi-
librium values so that linear stability analysis tech-
niques can be employed. This approach has been dis-
cussed in the following sections. Although this method
cannot be applied to arbitrary reactivity perturbations, it
can be used for the assessment of reactor's stability in
the vicinity of the steady operating point.

The instantaneous reactivity p(f) can be expressed
as the sum of external reactivity p,(?) (e. g. due to the
movement of control rods, changes in coolant poison
concentration, efc.) and the reactivity feedbacks from
the system (e. g. due to the changes in fuel and coolant
temperature, reactor poison concentration, efc.)

P(1)= Py (1) +p gy (1) 3)

For the steady-state (critical) operation of a reac-

p—/lC

1 1

i=1,2,..6 2)

tor
P(1=0)=pe (0)+pg (0)=0 “4)
For small deviations around the steady-state,
5pext (t):pext (t)_pext (0) (5)
and
Spn, (1)=p g, (1)=P g (0) (6)
thus

Sp(t)=p(1)=p(0)=p(t)=6p g +0pex  (7)

For a given steady operating power P, the
steady-state precursor concentrations C;,” can be ob-

* In the equations written here C; is actually the quantity
proportional to the precursor concentration since the point
kinetics equations are written in terms of power and not in terms
of neutron density

tained by equating the RHS of eq. (2) to zero. If a small
change in reactivity is introduced, the reactor state
tends to deviate from the steady-state. A stable reactor
will eventually return to the steady-state while an un-
stable reactor moves away from the steady-state. For
small deviations around the steady-state, the following
non-dimensional variables can be defined

_P-h

X —>P=P)(x+1) ()

0

C. -C.
=0 5C =Cp(y; +1) ©9)

Vi
i0
Substituting (8) and (9) in eq. (1) and using the
steady-state condition, the following equation is ob-
tained
d&x px B 1$ yo)
— =X+ v+ 10
VoA a Ai:Zlﬁ.y, 1 (10)
For small values of reactivity p, since px is a
product of two small quantities, it can be neglected.
With this assumption, eq. (10) becomes
dx p 1$ P
—=—TX+— v+ 11
PPy ;lﬁ i+ (1n
Similarly, substituting egs. (8) and (9) in eq. (2)
and using the steady-state condition

dy; =Ax—A v, i=12,...6 (12)
t

Thus, for small reactivity perturbations around
the steady-state, the reactor behaviour can be consid-
ered linear and the linear stability analysis methods
can be employed. Taking Laplace transforms” of egs.
(11) and (12) and simplifying, the reactor transfer
function is obtained

x(s) 1
6 £
PE) oy oy s P
=15+,
The calculations can be simplified by defining

the equivalent one group of delayed neutron precur-
sors with the decay constant defined as [4]

G(s)= (13)

A= 6[351 (14)
where 6
B= Eﬂi (15)

For one group of delayed neutron precursors, the
point kinetics equations become

dpz(p_ﬁ)pmc (16)
i A

* For convenience, the Laplace transforms of functions are
denoted by the same functional notation, e. g.

Llx(®)]=x(s),L[ z¢ (¢)] = z¢ (s), etc.
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e _p
dt A

Using the non-dimensional power and precursor
concentrations fromeqs. (8) and (9) and Laplace trans-
forming eqs. (16) and (17), the reactor transfer func-
tion for one group of delayed neutron precursors is ob-

P-AC (17)

tained
G(S):x(s) _ S+ A (18)
P(s) sA(s+ A +’Bj
A
Reactivity feedbacks

Changes in reactor power due to external pertur-
bations lead to changes in the fuel and the coolant state
and the reactor poison concentration. These changes
(e. g. variations in fuel and coolant temperature, cool-
ant density, local changes in fuel-coolant configura-
tion etc.) introduce reactivity changes or reactivity
feedbacks. Important reactivity feedback mechanisms
for pressurised water/heavy  water reactors
(PWR/PHWR) includes fuel and coolant temperature
effects and xenon reactivity feedbacks. The reactivity
changes associated with the fuel and coolant tempera-
ture variation can be calculated through correspond-
ing reactivity coefficients and temporal evolution of
fuel and coolant temperature. The xenon reactivity ef-
fects can be calculated using the equations governing
the variation of '3°Xe concentration in time.

A small change in the feedback reactivity due to
the changes in fuel and coolant temperatures and xe-
non concentration can be expressed as [3]

5pﬂ) :angf +ac5Tc +5pX (19)
The reactivity coefficients a¢and o, are defined
by
o :a—p, acza—p (20)
0T 0T,

Fuel and coolant dynamics

The equations governing the temporal variation
of fuel and the coolant temperature in a reactor coolant
channel can be obtained from the energy balance be-
tween the fuel pin and the coolant flowing outside

dT

—=a;P—a,(T; -T 21
dr 1 2( f c) ( )

a7,
/ :a3(Tf _Tc)_a4(Tc _Tcin) (22)

where Trand T are the average fuel and coolant tem-
peratures in the core respectively. 7, is the coolant
temperature at the inlet of the reactor core. a, a», as,
and a4 are constants at the given steady operating state
and are defined by

he, A h., A
1 a:eq eq __q eq’a4

_ 2’lnﬂow
s U sU3 -
meCy mCy m,C, m

al=

C

(23)

where /¢, is the equivalent heat transfer coefficient be-
tween the fuel and the coolant corresponding to the area
Aeq. The effect of thermal resistance due to the pellet-clad
gap, the clad thickness and the coolant film outside the
fuel pin has been accounted through the equivalent heat
transfer coefficient /.. The steady-state values of fuel
and coolant temperature (7}, T9) are obtained by equat-
ing the right hand side of egs. (21) and (22) to zero.
For small deviations around the steady-state, the
following non-dimensional temperatures are defined

T.-T

o=t 0 ST =Ty (2 +1) (24)
f0
T.-T

2, ==L ST =T, (z.+1) (25)
c0

Substituting eqs. (24) and (25) in eqs. (21) and
(22), the following governing equations in normalized
form are obtained

dz
ij:a1POX—az(Tme—Tcch) (26)

dz
Tcoj:aaTme—(a3+a4)Tcozc 27)

Taking the Laplace transforms of egs. (26) and
(27) and using z;(0) = 0 and z(0) = 0, the transfer func-
tions for fuel and coolant reactivity feedbacks are ob-
tained

z¢(8) ay(ay+ay+s) P,
Hy(s)="1—=—0—123 4 —2(28)

xX(s) 57 +s(a, +ay+ag)+aya, T

z.(s) aa P,
H(s)=20" = 14 20 (29

x(s) 5% +s(ay +ay+ay)taya, To
Xenon feedback

Xenon-135 (1¥3Xe) is a product of fission which
has very high capture affinity for thermal neutrons. It acts
as a neutron poison due to its large neutron absorption
cross section and it can have a significant influence on
slow power transients in thermal reactors as it introduces
reactivity changes due to changes in its concentration in
the core. The modes of production and removal of '33Xe
are schematically shown in fig. 1.

The half life of Tellurium is very small (~19 s);
therefore it can be assumed that iodine is produced di-

Fission
& ¢ | s | _»
- 5 135 1
Te | F|2-19;> ' =7 'i_ﬂyg.z? Cs I!'?Am‘y £

Stable

“n” capture

Figure 1. Modes of production and removal of **Xe
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rectly from fission (fission yield y; in eq. (34) accounts
for both '3°Te and !33I). The equations governing the
temporal variation of reactivity due to the poison can
be written

dp,
— =—asP-1 30
a 5 1P1 (30)
X Pt aypy —hpy - 1
i agP+ A py —Axpx —a;pxP (31
where the reactivity equivalent of xenon (py) is de-
fined [4] C
py =— XX (32)
Fx

a

and p; is a quantity proportional to the iodine concen-

tration defined
_oxC1

Fz

a

P = (33)
where ox is the microscopic neutron absorption
cross-section of xenon (135Xe), Cx and Cj are xenon
and iodine concentrations, X, is the total macroscopic
neutron absorption cross-section, F is the correction
factor to account for the finite size of the reactor and
fast neutron production, and as, a¢, and a; are con-
stants defined

N Y/ox b
ZaF Prcf ’

— O-X¢ref
P

_ Vx Z‘tfcx ¢ref
ZaF Prcf

(34)

5 6

a7
ref
where ¢, is the reference effective thermal neutron
flux at power P.

For small deviations around the steady-state
(pP1o>Px0)» normalized quantities z; and zy are de-
fined as

2 =PRI oz D) (35)
Pro

2y =PXTPX0 s ooz +D) (36)
Px0

Substituting egs. (35) and (36) in egs. (30) and
(31), the following equations are obtained

dz
d—; =x=Ayz (37)
dz P,
Cx _ gxT0 gz PO
dr Pxo Py
—Axzx —a7Py(zxx+zx +Xx)—>
P
_)ﬂ =_a6x70+2’[zl ﬂ_
dr Pxo Pxo
—Axzx —a7Py(zx +x) (38)

where zxx is neglected as it is a product of two small
quantities. By taking the Laplace transforms of egs.
(37) and (38) and simplifying, the transfer function for
xenon reactivity feedback is obtained

zx(s)

x(s) -

_ —lasA; +(ag +a;px0 )(s+4;)] Py (39)
(s+A1)(s+Ax +a;Py) Pxo

Hy(s)=

where pxy is the steady-state xenon reactivity load at
power P.

Overall transfer function
Substituting eqs. (24), (25), and (36) in eq. (19),
a change in feedback reactivity can be obtained
Opp =aiTyze +acToze + PxoZx (40)
The Laplace transformation of eq. (40) results in

Opp () =Tz e(s)+ac Tz (s)+Pxozx (s) (41)

Using egs. (28), (29), and (39)

Op g () =0T H ¢ (s)x(s)+
a TooH  (s)x(s)+ pxoH x (s)x(s) (42)

The overall reactivity feedback transfer function

H(s) is
()= f(‘;(;) — o ToH (s)+
+a ToH (s)+ pxoHx (s) (43)

Also, the Laplace transformation of eq. (7) gives
P(8)=0Pex (5)+p g () (44)

The closed loop block diagram for the overall sys-
tem with different feedback mechanisms is shown in
fig. 2. The equivalentblock diagram is shown in fig. 3.

e

Fpexls) rf\ p(s) Gl x(s) X(s) _

+

Sp(s) T o=

b z(s)

=afly x(s)

acTGOHc(s) =
Xf(s)
X(s)

=tgleg

PxoHds) = qu%

-

Figure 2. Closed loop block diagram with different
feedback mechanisms

a9 a = - ]
)
\'jpﬂj(s) Hs) = 5}—"”:(5) -
x(s)

Figure 3. Overall closed loop block diagram
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The overall closed loop transfer function for the
system is given as

Tr(s)=—20)__
1-G(s)H(s)

(45)
DETERMINING THE STABILITY
OF THE REACTOR

The Laplace transform approach

The condition for stability of the closed loop sys-
tem is that the roots of the characteristic equation
1- G(S)H(s)zzbns" +h, 5" L 46)
+b,s" +bys+by, =0
must all have negative real parts i. e. the poles of the
overall transfer function 7r(s) must lie in the left (neg-
ative) half of the complex s plane [5]. Thus, for given
values of reactivity coefficients a¢ and «, the stability
ofthe reactor system can be assessed by directly calcu-
lating the poles of transfer function or by using linear
stability analysis techniques such as Nyquist plot,
Bode plots, Routh-Hurwitz criterion, etc.

This method of determining the stability of the
system for given reactivity coefficients can be further
extended to identify the stability region of the reactor
with respect to the reactivity coefficientsa;and e,
i. e., for a given reactor, the stability boundary can be

S R
A A A
a, by 0
Ty
0 0 0
A1 0 0
P
{“6 0+a7P0] 0 ... 0
L\ Pxo0

established by considering o and o, as parameters.
This can be achieved using the Routh-Hurwitz crite-
rion [5]. The Routh-Hurwitz method can be used to
identify the nature of roots without actually calculat-
ing the roots of the characteristic equation.

For no root of the characteristic eq. (46) to have
positive real part, the necessary condition is that the co-
efficients b, b, _,, ..., b, by have the same sign and no
coefficient vanishes. In general, the necessary and suf-
ficient condition (Routh-Hurwitz criterion) for all the

roots of the characteristic equation to lie in the left half
of s-plane is that there is no sign change in the first col-
umn of the routh array. Since a;and o are taken as pa-
rameters, coefficients b, b, |, ..., b;, b, and the entries
in the first column of routh array are functions of ayand
.. By requiring that there is no sign change in the coef-
ficients b, b, _, ..., by, by and in the first column of the
routh array (i. e. all the entries are either positive or neg-
ative), an inequality is obtained for each entry. The in-
tersection of plots of these inequalities in the o¢ vs. o,
plane gives the stability region of the reactor.

Eigenvalue approach

An equivalent method for determining the sta-
bility of the system is through the eigenvalues” of the
system. Equations (11), (12), (26), (27), (37), and (38)
can be written in the matrix from as

YO _ gy o)+ r(r) (47
dr

where Y is the reactor state vector, 4 is the matrix of

constants and R(?) is the input vector that depends on

the value of external reactivity p.y. Equations (7) and

(40) have been used for calculation of total reactivity

p@.

Y =[xy ...v6 z¢ 2. 2 2x] (48)
a Ty aTy 0 Pxo 1
A A A
0 0 0 0
0 0 0 0
T
—a, “2T 0 0 0
0
T
ER -(ay +ay) 0 0
TcO
0 0 -y 0
A
0 0 2P0 (3, taPy) (49)
Pxo ]

’

R(t):Fpe’“ Do 0000 0} (50)
A

The condition for the system to be stable is that

the eigenvalues of the coefficient matrix 4 have nega-

tive real parts [5]. Again, taking a¢and a, as parame-

ters (all other matrix elements are constants),

* Eigenvalues are the roots of the characteristic equation
\4 - s/ \ =0, where / is the identity matrix.
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eigenvalues of are calculated. These eigenvalues are
functions of o.p and o, whose real parts should be less
than zero for stability. Plots of the inequalities thus ob-
tained give the stability region in the o -a plane.

Apart from the Laplace transform and eigenvalue
approach, the stability region can also be found directly
by sweeping the entire range of interest of values of o
and o, and identifying the threshold points (o, o) where
the reactor becomes unstable (the threshold points are the
values acand o where real parts of the poles/eigenvalues
become positive).

STABILITY ANALYSIS OF A TYPICAL PHWR

The methodology discussed here can be used for
linear stability analysis of thermal reactors which use
single phase coolant. This is illustrated here for a typi-
cal PHWR [6]. The PHWR is a horizontal pressure
tube type reactor which uses natural uranium fuel.
D,0 is used as coolant as well as the moderator which
are physically separated. The point kinetics parame-
ters [7] for the reactor are listed in tab. 1.

Thermal hydraulic constants, in eq. (21) and
(22), for lumped fuel and coolant model [6, 8] are
given in tab. 2. The parameters used in xenon reactiv-
ity calculations [3, 4] are presented in tab. 3.

The steady-state fuel and coolant temperatures
and xenon reactivity load for full power operation at
756 MW, are given in tab. 4.

The values listed in tab. 1 to tab. 4 correspond to
the full power operation for equilibrium core of the re-

Table 1. Point kinetics parameters for PHWR

1.89, 11.3, 10.3,

. 4
Delayed neutron fractions (3;)-10 21.1.7.56. 1.89

0.0128, 0.0315,

Decay constants (1;) [s '] 0.122, 0.315, 1.386,

3.466
One group delayed neutron fraction (f3) 0.0054
One group decay constant (1) [s '] 0.0812
Neutron generation time (A) [s] 7.0-107*

Table 2. Thermal-hydraulic constants

a [°CI 6.67-10°°
ay [s'] 0.142
as [s'] 0.169
as [s] 2.865
Coolant inlet temperature (7;,), [°C] 249
Table 3. Xenon dynamics constants
lodine decay constant (1) [s] 2.94.10°
Xenon decay constant (1x) [s™'] 2.1-107°
as[I7] 8.0-10°"
as [17'] 77710
ar [1] 291107

Table 4. Steady-state values

Thermal power (Py) [W] 756-10°
Average fuel temperature (7p) [°C] 626
Average coolant temperature (7) [°C] 270
Xenon reactivity (pyo) [mk]” —27.7

" mk stands for 107

actor and are assumed constant for the present analy-
sis. Using these values, the overall transfer function
and characteristic equation of the system is obtained
and the stability region for the reactor is plotted using
the methodology discussed in the above sections. In
order to assess the influence of xenon reactivity feed-
back on reactor stability, the stability maps have been
obtained for two different cases — (1) without the xe-
non reactivity feedback and (2) with the xenon reactiv-
ity feedback.

RESULTS

Stability maps
(one group of precursors)

The characteristic equation for the case without
the xenon feedback is

—446-10°s* —4.89-107° 5% +
+(03210r; —112:107* )s? +
+(ap+542-10 %, —141-107 ) s+
+(791-10 % +440-10° @, ) =0 (51)

Since the first two coefficients are negative, we
require that the next three coefficients are also nega-
tive so that the roots have negative real parts. Further,
after constructing the routh array, we also require that
there should be no sign change in the first column of
the routh array for the real parts of the roots of this
equation (i. e. eigenvalues of the coefficient matrix or
poles of the system transfer function) to be negative.
The plots of inequalities thus obtained give the stabil-
ity map. The stability map for this case (where only
fuel and coolant temperature feedbacks are considered
—no xenon feedback) is shown in fig. 4. The shaded
portion indicates the region of stability.

The characteristic equation for the case where
the xenon feedback is also included becomes

—4.46-10°5° -4.89-1075° +
+(032la; —112-107* )s* +
+(ap+542:10 7, —141-107 )s” +
+(7.94-10 2t +442-10 o, +193-107% )s% +
+(214-107 ; +119-10 %, +115-107 )s+
+(559-10 ¢ +311-10 " a, 3571075 ) =0

(52)
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1107 complexity of stability calculations. However, in order

0.8/ to assess the accuracy of one group approximation, the

%e 0.6 08 calculations were also carried out with six group pre-

cursors. The stability boundaries obtained using with

04 six group precursor equations are shown in fig. 6 and
0.211 | i o ﬁg. 7.

o ot AR It can be observed that there is practically no dif-
ool L ference in the stability regions obtained with one and
.- six precursor group calculations (for both calculations

’ —with and without xenon). In fact, in two cases, the co-
6. efficients of the limiting inequalities (that determine
-0.8if- the stability boundary) differ only after several signifi-

= N S S cantdigits. Itis clear that one group approximation can

-1 -08 -06 -04 -02 0 02 04 06 08 1-107*
@

Figure 4. Stability map when xenon feedback effects are
neglected

1-107*
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o
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Figure 5. Stability map with xenon feedback effects
included

The stability map for this case is shown in fig. 5.

It is clear that when xenon reactivity effect is ne-
glected, the reactor is stable for negative values of reac-
tivity coefficients. The slope of the stability boundary in-
dicates that the stability is largely influenced by the
changes in the fuel temperature coefficient and to a less
extent by the changes in coolant temperature coefficient.
This is consistent with the fact that the fuel temperature
reactivity effect is a prompt effect whereas the coolant re-
activity feedback is a delayed effect. The inclusion of xe-
non reactivity feedback shifts the stability boundary to
the leftina;vs. o plane, thus narrowing down the stabil-
ity region.

Stability maps
(six groups of precursors)

The inclusion of six groups of delayed neutron
precursors in the point kinetics equations increases the
degree of characteristic polynomial and subsequent

be used for the linear stability analysis without practi-
cally affecting the results (as compared to six group
calculations) while considerably simplifying the cal-
culations. Further, it was found that in addition to the
number of precursor groups considered, the variations
in the kinetic parameters (i. e. A, 1;, ;) also have insig-
nificant influence on the location of the stability
boundary. However, location of stability boundary is
largely influenced by the parameters governing the
evolution of fuel and coolant temperature and xenon

1107
0.8F
ac
0.6F

0.4 = EEEEE

0.2 [
Stable

o | Unstable;

-0.6

-0.8

=1 i i i i i i i i
-1 -08 -06 04 -02 0 02 04 06 08 1107

]

Figure 6. Stability map without Xe (i = 6 groups)
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0.8
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0.6 [
0.4
0.2
0
0.2 [
—04f

—0.B[

08 s o

i i i i i i
21 -08 -06 -04 -02 0 02 04 06 08 1-107*
o
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Figure 7. Stability map with Xe (i = 6 groups)
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concentration (i. e. the coefficients a,, a,, .... a; in egs.
(21), (22), (30), and (31)). It must be mentioned here
that the evolution of power transient following the re-
activity change is very sensitive to the kinetic parame-
ters. However, as the present analysis indicates, they
have a negligible influence on inherent stability of the
reactor around the equilibrium point (based on the
linearized system) and it is mainly dependent on the
feedback parameters (see Appendix).

Reactor behaviour at a typical
operating point

The reactivity coefficients change with the core
burn-up over the operating period of the reactor. The
evolution of the reactor operating point (¢, & op)
with burn-up and corresponding stability margins can
be traced using such stability maps (stability boundary
itself may change slightly with burn-up). A typical op-
erating point for PHWR is shown in fig. 8. It is clear
that at this operating point, the reactor is unstable due
to the xenon reactivity effect.

The Pole-Zero maps for the overall transfer
function — closed loop transfer function, eq. (45) — at
this operating point without and with xenon reactivity
effect are shown in figs. 9 and 10, respectively. Itis ob-
served that when xenon effect is neglected, all the
poles/eigenvalues are in the left half of the s-plane (the
reactor is stable). When xenon effect is included, there
are two poles in the positive half and the reactor is un-
stable. The same has also been verified using the
Routh-Hurwitz criterion.

The xenon feedback effect is slower in time as
compared to other reactivity feedbacks. Hence, the xe-
non reactivity effects are usually neglected while sim-
ulating power transients of short duration. However, it
is clear that the xenon affects the inherent stability of
the reactor and needs to be taken into account while
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Figure 8. Typical operating point of PHWR on the
stability map
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designing the reactivity control measures/equipment.
A reliable external reactivity control system (reactor
regulating system of PHWR) is required to maintain
the reactor at steady operating condition.

CONCLUSIONS

A methodology has been established for carry-
ing out the linear stability analysis of nuclear reactors
using the lumped reactor model including the reactiv-
ity feedbacks from the fuel and the coolant tempera-
ture and xenon. The non-linear terms involved in the
set of coupled governing equations were removed by
considering the small perturbations in the variables
around their steady-state values. The set of linear
equations thus obtained was used for the stability
analysis through transfer function as well as
eigenvalue approach. The methodology established
here was used for carrying out the linear stability anal-
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ysis of a typical PHWR. The stability maps (the region 143-1071 e
of stability in terms of fuel and coolant temperature re- ———+547-10 o+

activity coefficients) were obtained for this reactor. It
was shown that the positive reactivity feedback from
xenon narrows down the region of stability. Both six
and one precursor group point kinetics equations were
used to find the stability maps separately. No signifi-
cant differences were observed in two cases. This indi-
cates that equivalent one precursor group equations
can be used to obtain the accurate results without
elaborate six group calculations. Further, it was found
that when the reactivity coefficients are considered as
parameters, the stability of the reactor is largely influ-
enced by the factors governing the evolution of fuel
and coolant temperature and xenon concentration
rather than the neutron kinetics parameters.

The method of analysis presented in this paper is
limited in its applicability to the behaviour of reactor
in response to small deviations from the steady-state.
The response of reactor to finite reactivity perturba-
tions can be obtained by actually solving the reactor
dynamics equations. Nevertheless, the technique used
here provides valuable insights into the neutronic sta-
bility of reactors around a given equilibrium point by
appropriately considering different reactivity feed-
back mechanisms. Further, the methodology dis-
cussed here is applicable to the reactors that use single
phase coolant (e. g. PWR, PHWR), since void reactiv-
ity effects have not been modelled. However, it can be
extended to the reactors with two phase coolant (e. g.
BWR) by including the void reactivity feedback
through the appropriate time dependent formulation.

APPENDIX

As mentioned in the section Defermining the
Stability of Reactor, the stability map is the region of
intersection of the inequalities obtained from the terms
of the characteristic equation. For the case with one
precursor group and no xenon feedback, the inequality
that determines the stability boundary (seeeq. (51)) is

791-10 2 0t +4.40-10 a, <0 (AD)

Expressed explicitly in terms of parameters,
(A1) becomes”

(a3 +ay)ap+azo, <0 (A2)

It is seen that in this case, there is no dependence
on the kinetics parameters 3, 1, or A.

In the case of one precursor group and xenon
feedback included, the inequality that determines the
stability boundary (see eq. (52)), is

214-10 0 +119-10 0, +115-1077 <0 (A3)
Expressed in terms of the kinetic parameters,

(A3) becomes (values of Py, pxg, @, dy, ..., @ are sub-
stituted to simplify the expression)

* Inequalities (A1) and (A2) differ only by a constant positive
multiplying factor. The same is true for (A3) and (A4)

-17
+(7'96 0 30 1012}10 ¥

+ _3.8.10—18/1_@_

-20
—]AS;)+295-1015J<0 (A4)

It is clear that for the typical range of values of the
kinetics parameters 3, 1, and A, the relative magnitudes
of the terms involving the kinetic parameters are much
smaller than the other terms which are independent of
them. Example in (A4), in the coefficient of o, for the
typical values of 1, the term 1.43-10715/4 is a couple of
orders of magnitude smaller than the term 5.47-107'1,

Similarly, for the system with six precursor
groups (both with and without xenon), it can be shown
that the terms involving f8;, 4;, and A are much smaller
in magnitude than the terms independent of them.
Hence, it is clear that the location of the stability
boundary (i. e. its slope and intercept) is not signifi-
cantly influenced by the point kinetics parameters. It is
mainly determined by the thermal-hydraulic and xe-
non dynamics parameters.
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NOMENCLATURE

A — area, [m’]

C — concentration, [m ], or specific heat, [Jkg ' °C™']
h — heat transfer coefficient, [Wm 2 °C']
m — mass, [kg]

m — mass flow rate, [kgs ']

P — power, [W]

T — temperature, [°C]

t — time, [s]

x — non-dimensional power change

y — non-dimensional concentration change
z — normalized reactivity or temperature

Greek symbols

a — reactivity coefficient, [°C™']
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Busek A. KAIJIE, Pakemt KYMAP, K. OBAUNYPAXMAH, Asunam J. TAUKBAJL

JUHEAPHA AHAJ/IM3A CTABUWIHOCTU HYKIEAPHOI' PEAKTOPA
KOPUIITKREILEM KOHAEH30BAHOI' MOJEJA

Y HpOjeKTOBaH:y ¥ yNpaBbaky HYKJICAPHAM PEaKTOPOM aHATIH3a CTaOWITHOCTH peakTopa
3HAYajHO je MUTame, jep je ca TIICHUIITa CHTYPHOCTH MOCTOjaH HCYTPOHCKH OfI3UB Ha nopemehaj on
CYIITHHCKE BaKHOCTH. Y OBOM Pafy, pa3BUjeHa je OMIITa METOROJIOTHja IMHEeapHe aHaIN3€e CTaOMITHOCTI
HYKIICAPHIX PeakTopa KOpHIThermeM KOHJCH30BaHOr peakTOpcKor mopena. Kunerwmka peakropa
MOJIEJIOBaHA je KOpHIThermheM jeJHaunHA TauyKacTe KHHETHKE W TMOBpATHE CIPEre ca FOPUBOM, JOK Cy
XJIaJual 1 KCeHOH MOJIeJIOBaHU OiroBapajyhuM BpeMeHCKHU 3aBUCHMM jefHaunHaMa. OBe ynpaBibadke
jeqHaunHe JMHEapU30BaHe Cy MIPU pa3MaTparmby Malux nopemMehaja cTama peakTopa OKO CTabUITHE pajHe
Tauke. KapakTepuctnyHna jeqHaunHa CHCTEMa KOPHUCTH Ce 32 YCIOCTaBJbame 30HE CTAa0MITHOCTH peakTopa
¢ 003upoM Ha Koe(UIHjeHTe PEaKTUBHOCTH Kao mapamerpe. OBa MeTOfoJOTHja yIOTpeOsheHa je 3a
uneHTuuKoBame obmactu crabunHoctd tunmuuyHor PHWR peaktopa. [lokaszano ce jga mo3uTuBHA
MOBpPAaTHA CIIpera peakTUBHOCTH Off KCEHOHA Cy>KaBa 00J1acT CTaOMITHOCTH. [lajbe je yOUeHO 1a HeYyTPOHCKHU
KHHETUYKN TapaMeTpu (Kao IITO cy Opoj Tpyla 3aKacHeJIuX HeyTpOHa, BpeMe T'eHepucama HEYyTPOHa,
dpaknyje 3aKacHeIWX HEYTPOHA, WTH.) HEMajy 3HAYajaH YTUIAj Ha TOJIOXKA] TPaHUIE CTAOWITHOCTH.
I'pannna cTabWITHOCTH Y BEJIMKO] MEPH 3aBUCH OJf lTapaMeTapa KOjH PeryJuily IIPOMEHY TeMIlepaType
ropuBa M XJanoIa U KOHIICHTPAIN]jy KCEHOHA.

Kmwyune peuu: auneapra citiabuanocit, PHWR, koeguyujeriti peaxiiusrnoctiu,
KCeHOHCKa Hospailina cilpeza, obaacii citilabuarociiu



