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In the proposed work, a novel application of a numerical and functional analysis based on the
discrete wavelet transform is discussed. The mathematics of improving signals and removing
noises are described. Results obtained show that the method used in a variety of gamma spec-
tra is superior to other techniques.
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INTRODUCTION

Most experiments in gamma ray and activation
spectroscopy require high resolution accompanied by
low electronic noise. Germanium and scintillation
spectrometers, used independently or in coincidence
and coupled with photomultipliers, are applied to ob-
tain a significant reduction of fluctuations. The de-
tected spectra are often accompanied by noise due to
many reasons, resulting in random, spurious fluctua-
tions of the signal received at the detector. It is, there-
fore, advisable to find a simple method for smoothing
the signals and removing noises, especially in low
count experiments [1-5].

The discrete wavelet transform (DWT) is con-
sidered a simple and accurate method which can be
used for improving the detected spectra, especially in
low-background experiments. The mathematical the-
ory for DWT dates back to Fourier's theory of 1822 for
decomposing signals according to their frequencies.
DWT may decompose a signal directly according to
the frequency and transform it from the time domain to
the frequency domain. In the transformation, both
time and frequency information of the signal are re-
tained. Mathematicians moved from the concept of
frequency analysis to that of scale analysis by creating
a function that is shifted by some translation and
scaled. This process can be repeated by new shifts and
scales of the previous structures. At each step, a new
approximation of the signal can be accomplished [6].

Several methods have been applied for smooth-
ing and removing noise from the signals, but a distinc-
tion is seldom made between the procedures. Smooth-
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ing removes components (of the transformed signal)
occurring at the high end of the transformed domain
regardless of amplitude, while denoising removes all
amplitude components occurring in the transformed
domain, regardless of their position. Thus, DWT can
decompose a signal into several scales that represent
different frequency bands and at each scale, the posi-
tion of the signal's instantaneous structure can be de-
termined approximately [7, 8].

In this work, DWT is applied for smoothing and
denoising low-count background spectra detected by
germanium and scintillation spectrometers. The DWT
is compared with other known methods of smoothing
and denoising.

THEORETICAL BASIS
Historical background

The mathematical theory of DWT stems from
Fourier's theory for decomposing signals according to
their frequencies. DWT may decompose a signal di-
rectly according to frequency and transform it from the
time domain to the frequency domain [9]. In the trans-
formation, both time and frequency information of the
signal are retained. Mathematicians moved from the
concept of frequency analysis to that of scale analysis
in which the functions created are shifted by transla-
tion and scaled with different scaling functions. The
process can be repeated by new shifts and scales of the
previous structures. At each step, a new approxima-
tion of the signal can be accomplished. The decompo-
sitions of a signal using DWT occur at different scales
and positions. So, all basis functions are ¥, (1) de-
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rived from a mother wavelet through the following di-
lation and translation processes [10]

‘Pa’b(t):\/l,Y’(t;bj abeRaz0 (1)
a

where a and b are, respectively, scale and location pa-
rameters, with @ >0 and b having arbitrary values. The
mother wavelet ¥(¢) is chosen to serve as a prototype
for all basis functions in the process. All basis func-
tions used are the dilated (or compressed) and shifted
versions of the mother wavelet. A number of different
functions were applied for this purpose.

Discrete wavelet transforms

Since spectra detected by germanium and scin-
tillation spectrometers are Gaussian-shaped, a mother
wavelet of the wavelet family of Gaussian functions,
such as the Marr wavelet or the Mexican hat, would be
a good choice. The continuous DWT of a signal X(7) is
given by [11]

ab—me v(’ ”]dr @)

In practical computation, since the spectrum to
be analyzed is often discrete sampling data, the dis-
crete form of the wavelet is preferred. In the discrete
wavelet transform treatment eq. (1) is represented as

mnm—rs{t nbO“‘)] 3)

where m and n control the wavelet dilation and transla-
tion, respectively. The DWT treatment of the signal
X(¢) will be

Ty = j X(t)—=¥(al't-"b,)dt 4)
ao

where, Ty, represent the DWT values given on a scale
-location grid of the m, n index. The choice of @y =2
and by = 1 is known as the dyadic grid arrangement.
Usually, the discrete dyadic grid wavelets of the scal-
ing functions must be orthogonal to their discrete
translations. This means the information stored in a
wavelet is not repeated elsewhere and allows for the
complete regeneration of the original signal without
redundancy. Dyadic discrete wavelets are associated
with the scaling function and dilation equations. The
scaling function is associated with the smoothing of
the signal and has the same form as the wavelet, as
given by

Gmn ()=2""22"t—n) Q)

So, the scaling function can be convoluted with
the signal to produce approximation coefficients as
follows

L =[x ()i ©)

Now the signal X(¢) can represent a combination
of an approximation coefficient and the detailed coef-
ficients as

X(0)= 38 mabma (0)+

n=—co

+ Z sz,nl//m,n(t) (7)
The wavelet basis is a set of functions which are
defined by a recursive difference eq

$(1)=2 e $(2t k) (®)
k

where ¢(2¢— k) is a contracted version of ¢(¢) translated
along the time axis by an integer step £ and factored by
an associated scaling coefficient, ¢x. The value of the
coefficients is determined by the constraints of
orthogonality and normalization which require

2.ci =2 9
k

From the orthogonality conditions, scaled func-
tions can be derived as

w(t)=X (D" e, 92t k) (10)
k

which dependens upon the solution of w(#). Normal-
ization requires that

chck—Zm :260m (ll)
k

meaning that the above sum is zero for all m not equal
to zero and that the sum of the squares of all coeffi-
cients is two. Another important equation which can
be derived from the above conditions and equations is

Y (D erjcham =0 (12)

A good wal{y to solve these equations is to con-
struct a matrix of coefficient values.This is a square
MxM matrix where M is the number of non-zero coef-
ficients. The matrix always has an eigenvalue equal to
1. Once these values are known, all other values of the
function can be generated by applying the recursion
equation to obtain the desired dilation.

Spectrum denoising algorithm

Denoising of spectra depends on a common rou-
tine known as the pyramid algorithm. It is an efficient
method, especially in spectra detected by HPGe and
scintillation detectors. The algorithm operates on a fi-
nite set of 2" input data, where 7 is an integer. The data
are passed through two filters which create an output
stream that is half the length of the original input. The
filters are one half of the output produced by the
low-pass filter function, related to eq. (8)

1Y .
a; == eyt i=. 4 (13)
2j=1
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the other halfis produced by the high-pass filter func-
tion, related to eq. (10)

1y - .
b, =3 DD L f i=L A (14)
j=1

where N is the total channel number of the spectrum,
c are the coefficients, fis the input function, and ¢ and
b are the output functions. The low and high-pass out-
puts are usually referred to as the odd and even out-
puts, respectively. The low-pass output contains most
of the information of the original input signal. The
high-pass output contains the difference between the
true input and the value of the reconstructed one.

An important step in denoising signals is finding
wavelet functions which cause the even terms to be
nearly zero, such as the Haar wavelet which represents
a simple interpolation scheme.

After passing these spectrum data through the
filter functions, the high-pass filter obviously contains
less information than the low-pass output. Since the
perfect reconstruction is a sum of the inverse low-pass
and inverse high-pass filters, it is necessary to calcu-
late both of them as

L N/2 )
fj = zczi—jaia j=1...,N (15)
j=1

N/2 ,
=2 D" ey b, j=1...,N (16)
j=1
So, the reconstruction of the spectrum is ex-
pressed as

r=r+f (17)

Since most of the information exists in the
low-pass filter output, one can envision removing the
noise by taking the filter's output and transforming it
again to get two new sets of data, each a quarter of the
size of the original input. If, again, little noise is carried
by the high-pass output, it can be discarded. Each step
of re-transforming the low-pass output, the so-called
decomposition, reaches a maximum » numbers, while
the total channel number of the input spectrum is
N=2".The whole process of decompositions is shown
in fig. 1. The general procedure of denoising and
smoothing is summarized as follows: (1) applying the
DWT to a noisy spectrum and obtaining DWT coeffi-
cients, (2) removing the noise by deleting the coeffi-
cients associated with the noise, and (3) reconstruction
of the signal to obtain the signal after the removal of
the noise.

MATERIAL AND METHODS
Simulated spectra

Simulated spectra with different single and dou-
ble peaks were generated. Correlated noise was added

Input spectrum N = 2" channels

2"~ channels
——— PP
Low-pass odd
High-pass Even
m 1+ decomposition

2"~ channels
Low-pass odd

High-pass Even
—)—m—b— 2" decomposition

0
H n=1
L Low-pass m odd
High-pass Even
—i—m,;_ 1 n—1 decompositin

High-pass
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Figure 1. Block diagram of spectrum decomposition
using the discrete wavelet transform

to the spectrum using random generators. Random
numbers were produced using a mathematical ap-
proach. Basically, thus was done by starting with a
number called the seed and by then applying a mathe-
matical formula which produces another number. The
quality of the random numbers generated depends on
the length of the cycle and a 1.0 chance of each number
of the set to become a selected number, as well as the
extent to which the 1, 2™, 31 efc., number selected
after the each selected one is supposedly unrelated to
previous numbers [12].

Filter optimization

To determine the most appropriate wavelet fil-
ters for removing noises from the spectra, 11 different
filters from different families, Haar (H), Coiflet (C1,
C3, C5), and Daubechies (D4, D12, D20), were used.
The level of decomposition also significantly impacts
the reconstructed spectrum. A high level of decompo-
sition may distort the spectral peaks. The optimal level
of decompositions should be investigated on the simu-
lated spectra by calculating the RMS between the re-
constructed and the real spectrum at each level of de-
composition.

Experimental spectra

An AHPGe detector coupled with an analog dig-
ital converter (ADC), high voltage 5000 V, negative
polarity and relative efficiency 70 %, was used to de-
tect different sources of gamma spectra. Genie 2000
software, (Canberra Industries, Meriden, USA), with
an analyzer cart recorded the intensity of the incident
and the transmitted gamma rays. The detected spectra
can be translated to ASCII and processed with cus-
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tom-made programs based on ROOT. Automatic
pulse-shaping and pole-zero correction settings were
used and the energy scale calibrated by >*! Am, 3’Co,
137Cs, and ®°Co radioactive sources. The resolution of
the system was 1.9 keV at 1332.5 keV gamma peaks of
a ®Co point source kept at a distance of 10 cm in front
ofthe detector face. The whole system was housed in a
lead shielding of thicknesses varying up to 12 cmin or-
der to suppress the background noise effect. Different
kinds of spectra resulted from the denoising of back-
ground and mixed calibration spectra [13].

RESULTS AND DISCUSSION

Although our study has focused on testing the
DWT method for denoising the gamma-ray spectrum,
a comparison with other familiar methods was applied
as well. The choice of methods to be compared is prob-
ably the most questionable point of the comparison
presented. We have chosen two different advanced
methods for denoising: that of the Savitzky-Golay and
Fourier transform.

The Savitzky-Golay algorithm is an indirect fil-
ter because it is carried out in time, rather than in the
frequency domain. It is based on local least-squares
polynomial approximation and the subsequent evalua-
tion of the resulting polynomial at a single point within
the approximation interval. The Savitzky-Golay algo-
rithm has shown that a set of integers (a_,,, a_¢, 1), -+
a,_1,a,) could be derived and used as weighting coef-
ficients for carrying out the smoothing operation. The
use of these weighting coefficients, known as convo-
lution integers, turns out to be exactly equivalent to the
fitting of data to the above described polynomial,
while computationally more effective and much faster.
Therefore, the smoothed data point Y, by the
Savitzky-Golay algorithm is given by the following
eq. [14] "

2a; Yy,
Y =t (18)
2.a;
i=—1

Many sets of convolution integers can be applied,
depending on filter width and polynomial degree. Sets
of convolution integers can be used to obtain directly,
instead of the smoothed signal, its 1%, 2",..., m™ order
derivative, therefore the Savitzky-Golay algorithm is
very useful for calculating the derivatives of noisy sig-
nals consisting of discrete and equidistant points.

The Fourier transform is a tool for processing
signals in both the time and the frequency domain. It is
based on the idea of decomposing periodic signals into
their harmonic components. Many years after Fourier
had discovered it, a new algorithm called the fast Fou-
rier transform (FFT) was developed and became even
more popular. Fourier filtering methods are based on
decomposing a signal into its frequency components.
By suppressing the high frequency components, one
can achieve a denoising effect. Both DWT and FFT

transforms are invertible, and both sets of basis func-
tions are orthogonal. However, Fourier basis functions
are completely localized in the frequency domain and
have an infinite extent in the time domain, whereas the
wavelet basis functions are dually localized in both the
time and frequency domain [15].

Testing the wavelet for denoising spectra starts
with the chosen wavelet function. The performance of
denoising was evaluated by computing the root mean
square (RMS) ratio between the reconstructed spec-
trum and the ideal one (tab. 1). It can be seen that the
Haar wavelet performs best of all filters. The good re-
sults that were obtained with this filter are probably
due to the stair-step features of the Haar wavelet which
contributes to the major part of the spectrum. The opti-
mal level of decomposition for the Haar wavelet on the
simulated spectra was investigated by calculating the
RMS between the reconstructed and the real spectrum
at each level of decomposition, as presented in tab. 2.
Results showed that the spectrum should be decom-
posed until 24 approximation coefficients remain.
This corresponds to six levels of decomposition.
When a higher level of decomposition is used, strong
artifacts are present around the peaks. The denoising
of gamma spectra using the Haar wavelet and the six
levels of decomposition was tested on different types
of spectra. The first test was applied to a simulated
spectrum with single and overlapped peaks sur-
rounded by high levels of noise. The denoising of the
simulated signals using the DFT was compared with
Savitzky-Golay and FFT denoising, as shown in fig. 2.
It is clear that the denoising of the spectrum by a DWT
filter is more efficient and that it removes most of the
noise. Figure 3 shows a comparison of DFT, FFT, and
Savitzky-Golay filters for the removal of noise with-
out a simulated spectrum containing single and over-
lapped peaks with high noise. It is clear that DFT is
more effective in removing noise than other filters
without causing any damage. FFT and Savitzky-Golay
filters remove noise along the entire spectrum, but
with damage to the ratio of big peak shapes.

Table 1. Influence of the wavelet type on the

reconstructed spectrum

Wavelet| H D4 | D12 | D20 | ClI C3 | C5
RMS ]0.0220.023 | 0.033 | 0.005 |0.034| 0.031 |0.039

Table 2. Influence of decomposition levels on
reconstructed signals

RMS
Level : Y
Single | Overlapped | Background | Marinelli
1 0.0441 0.0680 0.0587 0.0588
2 0.0294 0.0660 0.0503 0.0426
3 0.0130 0.0638 0.0499 0.0346
4 0.0182 0.0604 0.0454 0.0288
5 0.0103 0.0579 0.0455 0.0250
6 0.0040 0.0570 0.0406 0.0230
7 0.0053 0.0666 0.0513 0.0242
8 0.0056 0.0712 0.0581 0.0246
9 0.0066 0.0726 0.0600 0.0289
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Figure 2. Comparison of DFT, FFT, and Savitzky-Golay of a simulated spectrum containing a single peak with high noise
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Figure 3. Comparison of DFT, FFT, and Savitzky-Golay of a simulated spectrum containing a single peak and overlapped
peaks with high noise

A background spectrum of the laboratory was The comparison of denoising techniques of the de-
acquired for the purpose of comparing the denoising tected background spectra is shown in fig. 4. It is clear
spectrum with the effectiveness of the lead shielding. that the highest integral areas from the main gamma
The main lines that can be observed are those of >?Rn transitions were noted under the peak at 351.9 keV
daughters (>'*Pb and 2!Bi), 4°K, 28T, as well as the (>'4Pb), followed by those under peaks at annihilation

annihilation line at 511 keV, caused by cosmic rays. 511.0 keV, 609.3 (>'“Bi), and 1460.8 keV (*°K). The
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Figure 5. Comparison of DFT, TTF, and Savitzky-Golay of the detected spectrum of a Marinelli beaker with different

gamma ray source

two most intense gamma transitions from the thorium
series i. e., 911.6keV (**%Ac) and 583.1 keV (*%TI),
are characterized by reduced arcas compared to the
lines of 351.9, 609.3, and 1460.8 keV.

Finally, the DWT filter was applied to the de-
tected spectrum of a 500 mL Marinelli beaker filled

with resin of a density of 1.15 g/cm? containing a mix-
ture of isotopes (**'Am, !'°Cd, '*°Ce, *’Co,
13405, 137Cs, 203Hg, *Mn,!3Sn, Y, and ®Zn) with
different activities. The detected gamma spectrum is
shown in fig. 5. Itis clear that DWT represents the best
filtering denoising technique for the detected gamma
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spectrum. Our study has also shown that, in compari-
son to FFT and Savitzky-Golay, the denoising of the
spectrum by DWT is much more efficient.

CONCLUSION

The discrete wavelet transform is shown to be
useful in denoising the experimental gamma spectrum
as well as the simulated spectra. Two simple ap-
proaches for filtering the transformed vector have
been systematically investigated. The DWT results
were compared to results obtained using the
Savitzky-Golay algorithm, as well as those pertaining
to the FFT filtering algorithm. Wavelet filtering algo-
rithms have been shown to denoise data to an extent
superior to other methods.
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Mycracga E. MEIXAT

MOJEPHA MATEMATHUYKA METOJA 3A ®UITPUPAIBE
IMYMA Y EKCHEPUMEHTUMA HUCKOI' OOBPOJA

Y paay je pa3MOoTpeHa HOBa IpHMEHA HyMepHuKe M (DYHKIMOHAIHE aHaJM3e 3aCHOBaHA Ha
MUCKPETHO] TAllaCHO] TpaHC(OpMaIWjy U ONHCAH jé MAaTeMAaTHUKH MOCTYMAK 3a MOOO0JbIIIathe CUTHAMIA 1
ofCTpamuBame Iyma. [lobujeHn pe3yaTaTu MoKa3yjy fia je MeTojia IpuMeheHa Ha pa3HOBPCHAM rama

CIICKTpHUMa y MpEeJHOCTU HaJl APYTUM TEXHUKaMa.

Kmwyune peuu: utym, cuzmuan, OUCKpeitina iaaacHa wparcgopmayuja



