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Microcalcifications and masses, as breast tissue anomalies (deviations from observed back-
ground regularity), may be viewed as statistically rare occurrences in a mammogram image.
After recognizing their principal common features - bright image parts not belonging to the
surrounding tissue, with significant local contrast just around the edges - several modifica-
tions to multifractal image analysis have been introduced. Starting from a mammogram im-
age, the proposed method creates corresponding multifractal images. Additional post-pro-
cessing, based on mathematical morphology, refines the procedure by selecting and outlining
only regions with possible microcalcifications and masses. The proposed method was tested
through referent mammograms from the MiniMIAS database. In all cases involving the said
database, the method has successfully enhanced declared anomalies: microcalcifications and
masses. The results obtained have shown that the described procedure may provide visual as-
sistance to radiologists in clinical mammogram examinations or be used as a preprocessing
step for further mammogram processing, such as segmentation, classification, and automatic
detection of suspected bright breast tissue lesions.
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INTRODUCTION

Breast cancer is the most frequent malignant dis-
ease in women in Europe causing one in six of all
deaths from cancers in the female population [1]. In
the United States, according to the American Cancer
Society reports [2], only lung cancer accounts for
more cancer deaths in women.

Mammography is currently the most effective
tool for the detection of breast cancer before clinical
symptoms appear, since it offers high sensitivity and
high specificity at low cost [2-5]. The older technique,
screen-film mammography, records the breast image
on a conventional X-ray film. After the acquisition, ra-
diologists examine the X-ray films. The newest tech-
nology, full-field digital mammography, comprises di-
rect conversion of the radiology image to the digital
image without using the film. A clinical study involv-
ing 387 women and 1548 mammograms, has shown
that digital mammography is superior both in terms of
image quality and radiation dose over screen-film
mammography [6].
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Amongst others, two important radiological fea-
tures in a mammogram are microcalcifications and
masses as common early signs of possible breast can-
cer[2,3]. Dueto a higher attenuation of X-rays in rela-
tion to their surrounding, microcalcifications and
masses are perceived as bright mammogram parts.
Microcalcifications are small mineral deposits in the
breast tissue [ 7]. Due to their small size (from 50 um to
1.0 mm, typically 0.3 mm) [3, 7] the detection of
microcalcifications is a difficult task [8, 9]. Masses or
nodules are breast tissue anomalies composed of dense
breast tissue [9]. In order to properly characterize a
mass, radiologists generally rely on its contour [9].
The main reasons that hinder the detection of masses
are changing shapes, size and density; poor contrast
between masses and surrounding tissue; background
tissue which is not uniform and often has similar char-
acteristics to the masses [7, 9].

Mammograms are often considered as medical
images with poor contrast. Conventional contrast en-
hancement algorithms and thresholding [10] are not
quite appropriate methods since they globally change
the entire image, not solely the particular details of in-
terest. The main premise in this study is that human tis-
sue, as many natural structures, is characterized by a
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high degree of self-similarity, also referred to as
fractality [11, 12]. In this context, self-similarity refers
to images that have several parts looking as the whole
image. The tissue anomalies are then considered as
structural “defects”, i. e., as deviations from the global
regularity of the background [12, 13].

A method for the segmentation of microcalcifications
only, using properly adapted conventional multifractal im-
age analysis, is proposed in [13]. Compared to other fractal
methods that consider the irregularities of the measure only
on a global scale, the procedures always ending with a sin-
gle value or spectrum per analyzed image, this method con-
siders each point of the image separately.

In this manner, one can establish a one-by-one
correspondence between each image pixel and appro-
priate multifractal parameters. This also means that,
after applying the method [13], one can find and seg-
ment only those image pixels with particular values of
the multifractal exponent (usually denoted as o) and
its global distribution, commonly denoted as fla).
Therefore, the multifractal analysis may be performed
in an inverse way: find parts in the image having par-
ticular values of o or fla). This kind of processing may
be defined as inverse multifractal analysis. The
method also has the advantage of not being too
computationally complex or too demanding in sam-
pling statistics. The efficiency and usefulness of this
approach in image segmentation was recognized by
Levy Vehel [12, 14, 15], from INRIA, France, and a
corresponding program was embedded in the
well-known Fraclab software [14].

The author has also proposed a method for the
segmentation of clusters with microcalcifications
based on modern mathematical morphology [8, 16].
Both approaches, multifractal and morphology, are
presented in brief in [16] and certain comparisons be-
tween the methods considered.

In this paper, the basic multifractal algorithm for
the segmentation of microcalcifications only [13] is
extended to include the visual enhancement of masses
too. The basic premise is that masses, as well as
microcalcifications, may be considered as defects or
rare anomalies of the breast tissue. An additional simi-
larity is that both types of anomalies are observed as
parts of mammograms brighter than their surround-
ings due to the higher attenuation of X-rays. Addition-
ally, by introducing noise filtering at the preprocessing
level and proper morphological operations at the
post-processing level, the visual enhancement of
masses is improved. The newly proposed method
could be used for the visual enhancement and segmen-
tation of both masses and microcalcifications. The ef-
ficiency of the proposed method has been tested
through referent mammograms from the mammo-
graphic image analysis society (MiniMIAS) referent
database [17] and some results presented in this work.

METHOD DESCRIPTION
Multifractal image analysis basics

Artificially  generated  fractal  structures
(monofractals) are described by the same fractal dimen-
sion in whole scales [11, 18]. Natural objects also ex-
hibit self-similarity, but only in a statistical sense. The
fractal dimension of these structures (multifractals) var-
ies with the observed scale [18-22].

The quantitative description of a multifractal
property can be derived in several ways. Due to its
simplicity, the box-counting method is very often
used. Let the structure S be divided into non-overlap-
ping boxes S; of size ¢ such that S = U;S;. Each S;box is
characterized by a specific measure, u(S;), and the
boxes may be assumed as measure domains. The quan-
tity

L VER) 0
Ine
is known as the coarse Hoelder exponent of the subset
S;. If ¢ tends to zero, the coarse Hoelder exponent ap-
proaches the limiting value o at the observed point

o =lime, 2)
-0

Parameter o describes the local regularity of the
structure. In the structure as a whole there are many
points with the same value of parameter . The next
step is to find the distribution of &, i. e. determine the
function fla), known as the multifractal (MF) spec-
trum. Function flar) describes the global regularity of
the observed structure [11, 18]. The multifractal spec-
trum can be viewed as the fractal dimension over the

subsets characterized by o
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where, N;(;) is the number of boxes S; containing the
particular value of o;. From expression (3) one can ob-
tain the limiting value

fl@)=liml £, (o)) @

The MF spectrum f{«) calculated as above is also
known as the Hausdorff dimension of the o distribu-
tion.

Upon finding the values of @ one may create an
“a-image” —a matrix of the same dimensions as an ini-
tial image, but comprised of values of a(m, n) with
one-by-one correspondence to the image pixels. This
means that, at position (m, n), an “a-image” has the
value of o(m, n) instead of the original pixel gray level.
From this matrix (or image), the MF spectrum fla),
also in matrix form, f(m, n) = f[ou(m, n)], can be esti-
mated. First, continuos exponents are discretized into
R values of o,

o, =, +(r-DAa,, r=1,2,....,.R  (53)
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In [13] the uniform division is used with

_ (amax ~ % pin ) (Sb)

R

Ifthe actual value of ¢ is within the subranger,
i.e,if a,<a<(a,+Aa),itisreplaced by «,. Such an
a-image is covered by a regular grid of boxes with in-
teger box sizesj =1, 2,... The boxes containing at least
one value of o, are counted, giving the number Nj(c,).
Boxes of different sizes are recursively taken into ac-
count and corresponding Hausdorff measures calcu-
lated for each image pixel according to expression (3)
as

Ao, =Aa

I

InN;(a,)
In j

Finally, from a set of discrete points in the bi-log-
arithmic diagram of In Ni(c,) vs. — In j, the MF spec-
trum f{er) is estimated from linear regression. The pro-
cedure is repeated for the entire o-matrix, thus
obtaining the “flar)-image” — a matrix filled by
pixel-wise values of f{cr). As in the “o-image”, in an
“flor)-image” at position (m, n), the fla (m, n)] value is
estimated instead of the pixel gray level [13].

Different measures p(m, ), may be used for es-
timating . Some of the most frequently used mea-
sures are [12]

fia,)=- =12 (6)

Maximum: y;(m,n)= max g(k,l) (7a)
(ke
Minimum:  y; (m,n) = (krfgrglgg(k, )y (7b)

Sum:  p;(m,n)= X g(k,I) (7¢)
(k.heQ
where i is the size of a measure domain around the ob-
served pixel (m, n), 2 is aset of all pixels (k, /) within a
measure domain, and g(k, /) is a grayscale intensity at
point (%, [).

Modification of multifractal
analysis to visual enhancement of
microcalcifications and masses

Microcalcifications and masses, due to a higher
attenuation of X-rays than the immediate background
tissue, correspond to image parts brighter than their
surrounding [3, 23]. Microcalcifications are seen as
small bright spots not belonging to the background tis-
sue. In geometrical interpretation, they are singular
sets of points. Sharp changes in the gray-level appear
just around the edges of microcalcifications [24, 25].
Masses are bright and relatively smooth surfaces in a
mammogram, significantly larger than microcal-
cifications. Masses are quite subtle, often occur in the
dense areas of the breast tissue, with smoother bound-

aries than microcalcifications, and in different shapes:
circumscribed, speculated (or stellate), lobulated or
ill-defined [23, 26].

With the common features of micro-
calcifications and masses in mind, i. e.,: (1) that they
are image parts brighter than their immediate sur-
roundings, (2) not belonging to the background tissue
(rare events in a statistical sense), with (3) significant
local contrast just around their edges, exhibiting (4)
different sizes and shapes, we can infer the guidelines
for the adaptation of multifractal analysis targeted to
the visual enhancement of microcalcifications and
masses. From multifractal images, « and flar), upon
once established one-by-one pixel-wise correspon-
dence with the original image, one should be able to
select possible masses and microcalcifications as ob-
jects made of pixels having both high a (high local
contrast) and low f{a) (rare events) values.

The capacity measure “minimum”, relation 7(b),
applied to an inverted (negative) mammogram image,
is well suited to emphasize local image regularity [13].
Namely, in a negative image, bright lesions (possible
masses and microcalcifications) migrate to the dark re-
gion where the local contrast, described by the ratio
Aln p/Au,is very high. In this way, one can obtain the
effect of the “logarithmic amplifier” which strongly
enhances just the small gray-level variations in the
dark zone of the inverted image (i. e., bright zone of
the original image). From the plot of In p, fig. 1, it is
evident that local contrast expressed by Aln p/Au is
very high in the dark-level domain (low p) and very
low in the light-level domain (high x), which is di-
rectly opposite to the need of enhancing bright details.
However, if one considers the inverted image, de-
scribed as a complement of the original image, bright
anomalies (possible masses and microcalcifications)
will migrate to the dark region under the strong influ-
ence of the “logarithmic amplifier”. This procedure
does not reduce the sensitivity within regions in the
middle gray, while in the bright zone of the inverted
image (dark zone of an original image), the contrast
between anomalies and surrounding tissue is naturally
high enough.

When enhancing a particular object, better re-
sults are obtained if the shape of the measure domain is
well adapted to the object. Taking into consideration
the most common shape of masses and micro-
calcifications, one can find that the disk-shaped do-
main is well suited [7, 10, 13].

The multifractal spectrum is determined by the
box-counting method according to (6). Since the goal
is to favor singularities, i. e., high frequency compo-
nents in the o distribution, it is preferable to use small
boxes sizedj=1toj= 16 a-pixels [13]. Ifthe box size
is large enough, the number of non-empty boxes tends
to saturation: it may remain unchanged although the
box sizes increase. Further on, points on the bi-loga-
rithmic plot In Ni(a,) vs. — In j stay on the horizontal



T. M. Stoji¢.: Visual Enhancement of Microcalcifications and Masses in ...

64 Nuclear Technology & Radiation Protection: Year 2015, Vol. 30, No. 1, pp. 61-69

Alnyu

0.5 1.0

[
“f =

\ Light ()
Dark {dk)

1
1
!
Aln ey Al
i Aln g, -
1
a

Figure 1. Plot of In p illustrates the effect of the
“logarithmic amplifier” in the dark-level domain

line, significantly reducing the resolution of calculated

fla) values. To the contrary, by using smaller boxes,
the number of non-empty boxes significantly varies
with the changes in the dimensions of the box, pre-
venting saturation and enabling a high resolution of
estimated fla) values [13].

The number of o subranges, denoted as R in ex-
pression (5a), also influences the accuracy of the MF
spectrum. A small number of a subranges yields a
smooth spectrum, but with a small resolution. Con-
versely, too many subranges produce a saw-toothed
(“erratic”) spectrum, albeit more detailed. In this re-
search, as a compromise solution, the value of R =100
is adopted.

Application of the modified
multifractal algorithm

The efficiency of the suggested algorithm has been
verified through referent mammograms from the
MiniMIAS database [17]. All mammograms in the data-
base have the same, 1 MB size, same 200 microns spatial
resolution, same dimension (1024 x 1024 pixels) and
same 8-bit gray-level pixel depth. Only mammograms
with declared masses and microcalcifications have been
selected from the whole set. For better visualization and
computational purposes, only parts (sized 256 x 256 pix-
els) of the whole mammograms containing zones of de-
clared anomalies were under exanimation. Multifractal
quantities, @ and f{r), were calculated by the previously
described procedure. Original images were first inverted
and then the capacity measure “minimum” used over
disk-shaped measure domains sized 1, 3, and 5 image
pixels. The number of subranges was R = 100, and the
covering box sizeswerej=1,2,4,6,8,10, 12, 14,and 16
a-pixels.

The mammograms in the MiniMIAS database,
as most other medical images, contain different types
of noises [27]. Any potentially suitable noise removal
technique must preserve small contrast changes just

around the edges of the lesions, because the visual de-
tection of masses and microcalcifications generally
relies on the existence of this boundary contour. How-
ever, every filtering changes the “fractality” of the fil-
tered image part. In [13] no filtering is used because
microcalcifications are usually so small that applying
even small-sized filters could completely remove or
degrade (attenuate) the contrast just around their
edges. Masses are significantly larger and intensive
simulations showed that noise removal by a
small-sized median filter is effective. The median fil-
ter is a simple and efficient tool in removing noise
while preserving the edges [10]. Additionally, median
filtering homogenizes the texture of the background
tissue and the mass itself without a significant degra-
dation of the grey-level contrast between them.

After the application of the modified multifractal
algorithm, some morphological postprocessing is
needed [28]. A successive morphological closing and
opening via a small disk- shaped structuring element
[8, 10] is suggested. By morphological closing (dila-
tion followed by erosion), the holes within the seg-
mented objects are filled and the unlinked contours
connected. Then, by applying opening (erosion fol-
lowed by dilation), objects smaller than the used struc-
turing element are completely removed. Objects de-
leted in this way mostly correspond to the bright
artefacts generated by some internal and/or external
sources, such as film emulsion failures and X-ray de-
tector noise [13, 27]. Finally, the contour lines around
the segmented objects are obtained as lines at the
boundaries of the objects comprised of border pixels
only. By superimposing these borderlines to the origi-
nal image, segmented details are strongly visually en-
hanced. As for masses, it is suitable to mark the largest
suspicious region, possibly the suspicious mass at first
and after that, if needed, to mark the subsequent ones.
This can be easily accomplished by pinpointing the in-
ner area of the object bounded by its contour line [10].

RESULTS
Mammogram with microcalcifications

In fig. 2(a) mammogram mdb256.pgm from the
MiniMIAS database is shown. Its part (256 x 256 pix-
els) around the declared cluster of microcalcifications
is depicted in fig. 2(b). The MF spectrum f{ar) of the
image in fig. 2(b) is plotted in fig. 2(c), and corre-
sponding a and f{a) images presented in figs. 2(d) and
(e), respectively.

Microcalcifications are local tissue anomalies,
parts of a mammogram not belonging to the back-
ground tissue. From the multifractal standpoint, they
have both high o and low f{«r) values, because, they rep-
resent sharp local changes and rare events. This is easily
noticeable in figs. 2(d) and (e) — microcalcifications are
represented as bright details (high values) in an o-im-
age and as dark ones (low values) in an f{or) image.
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Figure 2. (a) Original mammogram mdb256.pgm from the miniMIAS database; (b) part of mammogram mdb256.pgm
corresponding to the black solid square in (a) with declared cluster of microcalcifications; (¢) multifractal spectrum of the
image in (b); (d) an o image obtained from (b); (e) corresponding f(c) image of a mammogram part in (b); (f) superim-
posed contour lines around segmented objects after morphological post-processing obtained from f(c) image by selecting
pixels with 0 < f(a) <1
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Figure 3. (a) Original mammogram mdb005.pgm; (b) part of the mammogram within a white solid square from (a) with a
mass; (c) f(a) image; (d) contour line superimposed onto the original image after morphology post-processing applied to a

segmented f(«) image within the range 0 < f(a) <1

Note that in the o-image the background is not
purely black, but our visual system is not able to distin-
guish small gray-level variations in the dark domain.
Geometrically, microcalcifications are seen as singu-
lar sets of points not belonging to the more complex
structures (such as line, texture, surface), thus having
topological dimension smaller than 1 [11, 20].

Once obtaining - and f{ar) images, we can select
the desired parts from an original image by extracting
pixels having particular values of o and fla). Refer-
ring to the multifractal spectrum in fig. 2(c), we can
select image pixels from the desired range of flar) val-
ues, in this case 0 < fla) < 1, and after refining the seg-
mentation by using successive morphological closings
and openings, we can obtain contour lines around the
segmented details. These contour lines have been su-

perimposed onto the original image from fig. 2(b), as
displayed in fig. 2(f), pointing to a cluster of
microcalcifications. By changing the f(a) range, we
can interactively choose the appropriate segmentation
level for each particular case.

Mammograms with masses

Mammogram mdb005.pgm from the MiniMIAS
database with a clinically approved mass is shown in
fig. 3(a). A part of this mammogram (256 x 256 pixels)
corresponding to the white square in fig. 3(a) is de-
picted in fig. 3(b) and the flar) image in fig. 3(c).

Before applying the proposed algorithm, the
mammogram part from fig. 3(b) was preprocessed us-
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ing a median filter with a window size of 5 x 5 pixels.
Multifractal images, « and fla), were calculated using
the same procedure and parameters as in the previous
case with microcalcifications.

As already noted, masses are regions of dense
breast tissue, brighter than their surroundings, with
sharp gray-level changes just around the edges. Statis-
tically, masses are rare events in an mammogram im-
age, thus having a low fla) value. In fig. 3(d), a
mammogram part with a superimposed contour line
obtained froma f{«) image in fig. 3(c) by selecting pix-
els with 0 <fla) <1 is shown. Additionally, after mor-
phological post-processing (closings followed by
openings), only the contour line around the largest
segmented object (a mass) is depicted.

The last case refers to mammogram
mdb010.pgm with a mass approved by the MiniMIAS
database, as shown in fig. 4(a). In fig. 4(b), a cropped
mammogram part within a white square (256 x 256
pixels) with a superimposed contour around the largest
segmented object is depicted. Before analysis, the
cropped part was preprocessed using a median filter
(5 x5 pixels). The segmentation was carried out from a
fla) image by selecting pixels with 0 < fler) < 1. After
segmentation, a morphological closing followed by an
opening was applied.

Although the calculation of the multifractal
spectrum is time-consuming, particularly for large im-
ages, from a once obtained multifractal image radiolo-
gists gain the freedom to change the level of segmenta-
tion by setting the range of fla) values, thus
pinpointing the desired regions which may contain
microcalcifications and masses.

This paper considers the application of the same
multifractal algorithm for enhancing two essentially
different breast tissue anomalies: microcalcifications
and masses. It has shown that, with minor modifica-
tions, the multifractal algorithm for the segmentation
of microcalcifications can be extended to enhance the
masses of interest. The basic premise is that the
masses, as well as microcalcifications, may be consid-
ered as defects, anomalies of the breast tissue and,
hence, rare events in a statistical sense. An additional
similarity is the fact that, due to the higher attenuation
of X-rays, both types of anomalies are observed as
mammogram parts brighter than their surroundings.
In order to improve the segmentation of the contour
line around the mass, some additional morphological
post-processing is needed. After contour line segmen-
tation, it is quite possible to determine certain proper-
ties of the selected object, such as spatial properties
(size, different shape parameters, efc.), texture (kind
and quality of textures) or fractal properties (local and
global regularity of the object structure). Adding
fractal parameters to existing feature vectors may im-
prove algorithms for automatic classification in mam-
mography, such as the classification of masses and
clusters with benign or malignant microcalcifications.

(a)

(b}

Figure 4. (a) Original mammogram mdb010.pgm from
the MiniMIAS database and (b) contour line around the
segmented mass superimposed onto the mammogram
part corresponding to the white square in (a)

CONCLUSIONS

In the domain of visual enhancement,
microcalcifications are small bright spots not belong-
ing to the background tissue, usually in the form of
clusters, characterized by a sharp change of local con-
trast at their very edges. In multifractal terminology,
these features are defined by the high values of the
Hoelder exponent (high local changes) and low val-
ues of its distribution fla) (rare events in a global
sense).

Considering the masses as bright irregular image
parts differing from the surrounding tissue, statisti-
cally representing rare events, the method for the vi-
sual enhancement of microcalcifications has been ex-
tended to include the enhancement of the said masses.
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By introducing median noise filtering at the prepro-
cessing level, as well as morphological closing and
opening followed by object boundary extraction at the
post-processing level, the segmentation of masses is
significantly improved.

Note that the calculation of the multifractal spec-
trum is time-consuming, particularly for large images.
But, from a once obtained multifractal image radiolo-
gists gain the freedom to change the level of segmenta-
tion by setting the range of o and/or f{er) values in or-
der to find the desired regions containing bright ano-
malies, i. e. possible microcalcifications and masses.
Objects enhanced in this way are not only
microcalcifications and masses, but also, details
brighter than the surroundings which can be consid-
ered as structural “defects”, i. e. as deviations from the
global regularity of the background. By introducing
morphological post-processing, we may remove iso-
lated details which, most likely, should not be classi-
fied as tissue anomalies.

The efficiency of the proposed method was
tested via mammograms from the MiniMIAS data-
base. In all instances, the method successfully en-
hanced the declared anomalies, masses and
microcalcifications.

The method proposed here may be used as a vi-
sual assistance in mammogram analysis or embedded
as part of a more complex expert system for
mammogram examination or automatic detection of
masses and microcalcifications aimed at obtaining in-
formation about local and global regularity/fractality
of the segmented objects.
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Tomucaas M. CTOJU'h

BU3YEIHO UCTUNHAILE MUKPOKAJIINUP®UKAIINIA U MACA Y
OJUTUTATHOM MAMOIPAMY KOPHUIMKREWKWEM MOIN®UKOBAHE
MYJITU®PAKTAIHE AHAI/IN3E

Muxkporanmudukanmje ¥ Mace, Kao aHOMaldje TKWBAa MOjke (OmcTymama oOff YyOueHe
IPABIJTHOCTH OKOJHOT TKWBA) MOTY C€ cMaTpaTH PETKUM jorabajuMa y CTaTHCTHYKOM CMHUCIY Ha
MamorpackoM cHMMKY. HakoH npeno3HaBama HHXOBHX 3ajeJHNUYKUX KapaKTepUCTHKa (CBETIHjH
00jeKTH KOju He TPUINajiajy OKOJIHOM TKHBY Ca 3HAYajHUM JIOKAJIHUM KOHTPACTOM CaMO OKO WMBHIIE), Y
OCHOBHU MYyJTH(PpaKTaIHU METOJ YBEAEHO je HEeKOJIUKOo Mmopucukauuja. ITomazehm op murmramHor
MaMorpama, MpeiyIoXkeHn METOJ] cTBapa oiroBapajyhe Mmyntudpakransae cnuke. [1onaTHo MOp(OIOIIKO
HOCTIpOLeCUpamke MoOosbIIaBa MYATH(MPAKTATHE METO/ UCTUIIAEM CAMO PErHOHa ca MOTEHIUjaTHUM
MEKpoKanudukanujama u macama. [Ipefnokenu MeTop je TecTupaH Ha pepepeHTHUM MaMoTpaMuMa u3
MiniMIAS 6a3e. Y cBUM TeCTHUpPaHUM CllydyajeBUMa, METOJ] j€ YCHEIIHO UCTaKao AeKJIaprucaHe aHOMalmje:
MUKpokanupukanmje u mace. Onucad METOJ] MOKE Ce CAaMOCTATHO KOPUCTUTH Kao BU3YeJIHA aCUCTEHIIU]ja
y KIIMHIYKOM HCHUTHBAKY MaMOIpaMa, Ul Kao MPEeTHpolecupamke Y Aakoj 00pafn MaMorpama y by
cerMeHranyje, Kiiacuukanyje 1 ayroMaTcKe fIeTeKIFje CYMIbUBUX CBETIINX Jie3uja y TKUBY JI0jKe.

Kmwyune peuu: mamozpagpuja, myatiiughpaxitiaana anaiuda, MUKpoxasyugukayuja, maca, obpaoa cauke




