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ANGLE software for semiconductor detector efficiency calculations - long existing and
widely accepted tool in quantitative gamma spectrometry - has been recently extended to
scintillation Nal detectors. The extension features in the latest edition (ANGLE 4) and it is
briefly outlined. Discretization of reference efficiency curve, meaning possibility of using AN-
GLE 4 for particular gamma energies without constructing the complete reference efficiency
curve, is particularly emphasized. This yields both in enhanced practicality and higher accu-
racy, while reducing the potential for systematic errors. The present work is primarily fo-
cussed on experimental verification of ANGLE 4 for Nal detectors. Two detectors (2 x 2 and
3 x 3 inches) were employed in the experiment. Commercially calibrated gamma sources (in
the forms of quasi point and cylinder) and homemade solutions (diluted from calibrated
ones) were measured at various distances from the detector(s), ranging 0 cm to 50 cm. En-
ergy range observed was 59 keV to 1408 keV. Versatility of counting conditions, in terms of
detectors and sources used, gamma energies observed, source detector separations, ¢tc., was
aimed at creating as large experimental evidence as possible for verification purposes. Experi-
mentally obtained efficiencies are compared with those calculated by ANGLE 4. Very good
agreement is obtained - well within the experimental uncertainties - thus proving the reliabil-
ity of the software.
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experimental verification

INTRODUCTION

ANGLE software for semiconductor detector
gamma efficiency calculations in its various forms has
been in use for more than 20 years now [1-3]. It is gen-
erally regarded as a sophisticated/advanced tool in
quantitative gamma spectrometry — nowadays rou-
tinely exploited in hundreds of gamma spectrometry
based laboratories worldwide, including the most
prominent ones [4]. ANGLE allows accurate determi-
nation of the activities of gamma spectroscopic sam-
ples for which no replicate standard exists, in terms of
geometry and matrix. A semi empirical efficiency
transfer (ET) approach is employed, combining ad-

* Corresponding author; e-mail: bobo_jovanovic@yahoo.co.uk
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vantages of both absolute (Monte Carlo) and relative
(traceable source based) methods to determine the
sample activity by gamma spectrometry [2, 5-15] — in
this way the practical limitations of relative methods
are reduced, while the potential for systematic errors
in the absolute ones is minimized.

The physical model behind ET is the concept of
the effective solid angle (€2 ) —a compound parameter,
calculated upon the input data on geometrical, physi-
cal, and chemical (composition) characteristics of (1)
the source (incl. its container vessel), (2) the detector
(incl. crystal housing and endcap), and (3) counting ar-
rangement (incl. intercepting layers between the latter
two) [1, 12, 16-18].

The program is broadly applicable (practically to all
most common situations encountered in gamma-spec-
trometry practice), e. g., in nuclear industry, environmen-
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tal monitoring, radioactivity control, food safety, medi-
cine, radioactive waste management, safety/security/
safeguards, scientific research (e. g., neutron activation
analysis, nuclear data standardization, reactor physics),
education and training, efc. [19-26]. Point, disc, cylindri-
cal or Marinelli samples, small or large, of any matrix
composition, measured on coaxial, planar or well type de-
tectors, HPGe or Ge(Li) — and now Nal — can be accom-
modated. No standards are required, but a start up refer-
ence efficiency curve (REC) must be obtained, generally
as a onetime calibration procedure. Time and effort put
into obtaining a reliable REC is largely paid off in subse-
quent ANGLE utilization, through the simplicity, speed
and productivity in obtaining analytical results —leading to
improved laboratory performance.

ANGLE is thus characterized by its (1) wide
range of applicability, (2) high accuracy, (3) ease of
use, (4) flexibility in respect to input parameters and
output data, (5) short computation times, (6) easy com-
munication with another software, (7) suitability for
teaching/training purposes, (8) potential for accom-
modating — into its architecture — other efficiency cal-
culation methods of semi empirical or absolute (Monte
Carlo) types, and (9) possibility of expanding its cur-
rent scope of applicability to further/particular user's
needs and/or fields of interest. A key aspect and differ-
ence from other approaches, which greatly enhances

practicality, is the fact that no factory characterization
ofthe detector response is required — any detector may
be accommodated as long as some basic knowledge
concerning its construction is available (which is nor-
mally the case — detector manufacturers do supply rel-
evant data sheets).

Besides the decades of practical utilization, ac-
curacy of the software is successfully tested in an
IAEA organized gamma spectrometry software
intercomparison exercise [10] — ANGLE scored
0.65% average deviation from the exercise mean (for
E,>20 keV energies). ANGLE is available from the
developers, while commercially distributed by
AMETEK/ORTEC, USA as well [4, 27].

NEW VERSION OF ANGLE AND
EXTENSION TO SCINTILLATION
DETECTORS

Details about ANGLE software principles, in-
cluding theoretical background and application to var-
ious types of semiconductor detectors, as well as the
description of the software, are elaborated in detail
elsewhere [1,4, 12, 16-18, 27]. New version, ANGLE
4, 1is about to be released [4]. As compared to previous
version, ANGLE 3, the new version brings many new
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Figure 1. ANGLE 4 main screen
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features, among which (1) support for scintillation Nal
detectors (both cylindrical and well type), (2) new
XML based file format which allows easy manipula-
tion of both input and output files by a third party soft-
ware, and thus, (3) automation and complex analyses,
(4) scaled graphical preview of input and output pa-
rameters, which can be exported to bitmap or vector
file formats, (5) multilanguage support, (6) additional
input parameters for detectors, (7) user interface im-
provements, (8) discrete reference efficiencies, efc.
ANGLE 4 main screen is shown in fig. 1.

The option of Nal detectors was considered from
the very beginning of ANGLE development. It was
believed, however, that the concept of advanced soft-
ware for semiconductor detectors does not allow for
scintillation ones, regarding (wrongly) the latter as in-
adequate and obsolete. Nevertheless, in house version
of ANGLE which supports Nal detectors exists since
2002 and was successfully tested in geochronology re-
search [24].

The idea of creating a separate, much less elabo-
rate software (for Nal detectors only) was another pos-
sibility, but that was deemed a sort of trivial and over-
simplified ANGLE variation to exist on its own. It
came eventually as a result of ANGLE users' feedback
and growing interest, that this option should be incor-
porated within the new version of ANGLE — as it is
now the case in ANGLE 4. The fact that Nal detectors
do not belong to semiconductor family is largely over-
shadowed by the attributes they have in common
and/or complement each other.

The use of Nal detectors for gamma spectrome-
try is steadily increasing, despite their apparent draw-
backs (most of all the poor resolution) as compared to
semiconductor ones (HPGe in particular) which made
Nal look like a historical relict 30 years ago. However,
in many fields of application, only a few targeted
radionuclides are being measured (most notably
Cs-137 in environmental monitoring), often on “in-
dustrial scale”, i. e., for huge number of samples of
similar origin (e. g., food, soil, air filters, construction
materials, consumables, efc.). An order of magnitude
lower price, simple maintenance and high efficiency
(short counting times) then come decisively in Nal fa-
vour — when laboratory performance and output are
paramount.

Applicability of ANGLE concept to Nal detec-
tors is straightforward, especially for those already fa-
miliar with ANGLE architecture. This comes as a con-
sequence of apparent fundamental similarity between
the two types of detectors, HPGe and Nal. Of course,
ANGLE 4 accounts for Nal as gamma ray absorbing
material which gives rise to impulses/count in a
gamma spectrum. The use of REC — as onetime cali-
bration — which is typical for ANGLE, is still recom-
mended. Care must be taken, however, that not so
many experimental calibration points can be obtained
within the gamma energy region of interest (e.g.

50 keV to 2000 keV), due to the fact these have to be
separated by considerable margins (in gamma ener-
gies) to avoid overlapping of the peaks. This is particu-
larly valid when REC is obtained from a single multi
gamma source, but can be avoided using several single
gamma sources measured successively/separately.

Concerning reference calibration, i. e. REC,
there is a very important advantage that ANGLE 4 of-
fers. Namely, given the nature of Nal measurements, it
went in most cases about measuring only one nuclide
at a time, even just one energy (e. g., 661.6 keV of
Cs-137). In such case, ANGLE 4 allows REC to be
considered as separate/single points (thus not as a
curve interpolated between experimental calibration
points). Let us call it “REC discretization”. One or
more discrete points can be chosen/used for particular
gamma energy (or energies) of interest.

Apparently REC discretization makes ANGLE
application not only extremely simple, but also more
accurate. It can fairly be said this is quasi relative ap-
proach to quantitative gamma spectrometry on its best
— preserving most of the accuracy of relative method,
yet allowing for unlimited flexibility in sample type,
matrix, size, its container characteristics and other in-
tercepting layers, counting arrangement, etc. Two
most common types of Nal detectors are available in
ANGLE 4: standard (with cylindrical crystal as the ac-
tive body) and well type (a hole is drilled in the crystal
to enable placement of small sources, in order to maxi-
mize the efficiency). Detector data input is organized
in the same way as for semiconductor detectors. User
oriented and error correcting graphical interface is in-
structive and self explanatory (fig. 2). Much less de-
tector parameters are required, as compared with
semiconductor detectors, due to simplicity of Nal de-
tector construction. Some new detector parameters are
introduced, specific for this detector type, such as re-
flecting layer, optical coupling and photomultiplier
tubes.

EXPERIMENTAL

Experimental verification of ANGLE 4 software
for Nal detectors was effectuated at Prof. Younis S.
Selim Laboratory for Radiation Physics, Physics De-
partment, Faculty of Science, Alexandria University
(Alexandria, Egypt). For the sake of verification, the
laboratory was supplied with the pre release version of
ANGLE 4. Two Nal detectors with cylindrical crys-
tals, 2 x 2 and 3 x 3 inches were used in the experi-
ments. All the details about the detectors are listed in
tab. 1; some of the parameters (concerning the optical
coupling and photomultiplier tube) were irrelevant for
efficiency calculations performed by ANGLE 4.

The first set of activity standards in the form of
point sources was used for calibration of gamma spec-
trometers. Radioactive substance itself is a very thin,
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Figure 2. Data input dialog for cylindrical Nal detector

Table 1. Characteristics of Nal detectors used in the
experiments

Item Detector Detector
3x3 2x2
Manufacturer Canberra
Serial number 09L 652 09L 654
Detector model 802
Type Cylindrical
Mounting Vertical
Resolution (FWHM) at 661 keV 8.5% 7.5%
Cathode to anode voltage +800 V DC | +900 V DC
Dynode to dynode +80 V DC
Cathode to dynode +150 V DC
Tube base Model 2007
Shaping mode Gaussian
Detector type Nal(T1)
Crystal diameter [mm)] 76.2 50.8
Crystal length [mm)] 76.2 50.8
Top cover thickness [mm)] Al(0.5)
Side cover thickness [mm] Al (0.5)
Reflector — oxide [mm)] 2.5
Weight [kg] 1.8 0.77
Outer diameter [mm] 80.9 57.2
Outer length [mm] 79.4 53.9
Crystal volume [cm3] 347.49 102.96

compact grained layer, applied to a small circular area
(5 mm in diameter, i. e., “quasi point”), in the middle of
the source, between two polyethylene foils and each
having a mass per unit area of 21.3 + 1.8 mg/cm?. By
heating under pressure, the two foils were welded to-
gether over the whole area, so that they are leak proof.
To facilitate handling, the foil 26 mm in diameter is
mounted in a circular aluminum ring (outer diameter
30 mm and height 3 mm), from which it can easily be
removed if and when required. These point sources
(**'Am, ¥7Cs, 133Ba, °Co, and '*?Eu) were purchased
from the Physikalisch Technische Bundesanstalt
(PTB) in Braunschweig and Berlin, which is national
institute for science and technology and the highest
technical authority of Germany in the field of metrol-
ogy and certain sectors of safety engineering. The cer-
tificates showing the activities of the sources and cor-
responding uncertainties are listed in tab. 2. The data
sheet stating the values of half life photon energies and
photon emission probabilities per decay for all
radionuclides used in the calibration process is given
in tab. 3.

The second set of activity standards was home-
made volumetric from standard solution. The details
of the preparation are listed in tab. 4. Polypropylene
500 ml vial was filled with 200 ml, 300 ml, and 400 ml
of 2Eu aqueous solution of known activity.
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Table 2. PTB point sources' activities and their
uncertainties

PTB — Nuclide A[%ISV(H}’ Reference date Un[clf]rstgl]nty
2 Am 259.0 2.6
13Ba 275.3 +2.8
2Ry 290.0 June 1, 2009 +4.0
B7Cs 385.0 +4.0
Co 212.1 £1.5

Table 3. Half-lives, photon energies and photon emission
probabilities per decay for the radionuclides used in
this work

PTB - Energy Emission Half life
Nuclide [keV] probability [%] [d]
#*Am 59.52 359 157861.05
13Ba 80.99 34.1 3847.91
121.78 28.4
244.69 7.49
. 344.28 26.6
Eu 778.95 12.96 4943.29
964.13 14.0
1408.01 20.87
s 661.66 85.21 11004.98
o 1173.23 99.9
o 1332.50 99.982 1925.31

Table 4. Properties of volumetric radioactive sources
used in the measurements

Ttems 152Eu solution sources description
(homemade)
Volume [m] 200 | 300 | 400
Activity [kBq] 5
Uncertainty [%] 1.98
Reference date January 1, 2010
Vial manufacturer Nalgene
Vial material Polypropylene

The preparation method of the homemade
sources was based on the original (PTB) aqueous
source activity and its properties which are known [to-
tal activity 202 + 4 kBq at Jan. 1, 2010, with a total
weight 1000.41 g) — simply dividing the solution ac-
tivity by the total mass of the solution, the activity for
each gram will be known from the specific activity law

a=— (M
m

where a [Bqg '] is the specific activity, 4 [Bq] —the ac-
tivity, and m [g] — the mass of the material. So, to pre-
pare the source with the needed activity one just calcu-
lates how many grams to take from the parent solution.
In the present work, in order to prepare various vol-
umes of solutions with the activity of 5 kBq, each time
we took 25 g from the parent solution and completed
the rest of the vials by the carrier solution; carrier solu-
tion was prepared from 0.1 M HCl in aqueous form.

Measurements were carried out to obtain statisti-
cally significant main peaks in the spectra; spectra are
recorded and processed by winTMCA32 software
made by ICx Technologies. Measured spectrum was
saved as spectrum ORTEC files which can be opened
by ISO 9001 Genie 2000 data acquisition and analysis
software made by Canberra where the peak analysis is
accomplished. Acquisition time is set high enough to
get the number of counts to be at least (or more than)
10,000, which makes the statistical uncertainties less
than 1%. The spectra were analyzed with the program
using its automatic peak search and peak area calcula-
tions, along with the changes in the peak fit using the
interactive peak fit interface, when necessary to re-
duce the residuals and error in the peak area values.
The peak areas, the live time, the run time and the start
time for each spectrum are entered in the spreadsheets
that are used to perform the calculations necessary to
generate the experimental efficiency curves [28-40].
Some representative spectra, including all sources and
both detectors, can be found at a dedicated web page
accompanying this paper [41].

The experimental full energy peak efficiency at
energy F, for a given set of measuring conditions can
be computed by the equation

&(E)= M

TAGP(E)
where N (E) is the number of counts in the full energy
peak, 7T [s] — the measuring time, P(E) — the photon
emission probability at energy E, As— the radionuclide
activity, and C;— the correction factor due to dead time
and radionuclide decay. In these measurements of the
low activity sources, the dead time had been always
less than 2%, so the corresponding factor was obtained
simply by using ADC live time. The decay correction,
Cy, for the calibrating source from the reference time
to the run time is given by

Cd — elAT (3)

where A4 is the decay constant and A7 — the time inter-
val over which the source decays corresponding to the
run time. The uncertainty in the experimental full en-
ergy peak efficiency, o, is given by [40]

2 2 2
o :6\/(68j 0'124 _{&s‘j crf) +(68j 0']2\, 4)
04 opP ON
where o4, op, and oy, are the uncertainties associated
with the quantities 4s, P(E), and N(E), respectively, as-
suming that the only correction made is due to the
source activity decay.

While measuring volumetric sources, a thick
plexiglas cover was placed directly on the detector en-
trance window as an absorber, so as to avoid the effect
of B- and X-rays and to protect detector endcaps.
Therefore, no correction was needed for X-gamma co-
incidences, since in most cases the accompanying
X-rays were soft enough to be absorbed completely
before entering the detector. In addition, angular cor-
relation effects were negligible for low source to de-
tector distances.

G 2)
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As to y-y true coincidence summing (TCS), no
corrections were deemed to be made neither. It is ap-
parent that for point sources the summing is negligible
—the closest counting position (P4) is more than 20 cm
from the detector top. For voluminous sources it is not
negligible, but it is fair to estimate that it does not ex-
ceed a few percent, neither. Namely, all three volumi-
nous sources had the diameter (11.15 cm) much larger
than that of the detector(s) (5.08 cm to 7.62 cm). To-
gether with source height (2.145 cmto 4.183 cm), this
makes a few cm effective distance from the detector.
In addition, voluminous sources were measured at
~0.8 cm from the detector top (including container
bottom thickness of 2.03 mm, container foot height of
2.00 mm, and source support thickness of 3.36 mm to
3.63 mm). When comparing with literature values for
Eu-152 correction factors (all six significant y-lines,
but mostly prominent for 122 keV), we came to the
conclusion that this effect could not produce more than
~5% systematic error. This is within experimental un-
certainty budget (~2% on factory calibration of the so-
lution, a few percent on homemade dilution, and an-

other few percent on counting statistics). Last but not
least, ANGLE software — based upon efficiency trans-
fer (ET) principle — inherently tends to reduce system-
atic errors of this type, due to similarity of counting ar-
rangements (partial error cancelling); this is especially
valid when counting arrangements are similar (e. g.,
comparing voluminous sources among themselves).

In order to prevent dead time and pile up effects,
source activities were kept below a few kBq for each
radionuclide. High count rates were, hence, avoided
when measuring at close distances; however, this im-
plicated long counting times at higher distances [37].
The experiments were set so as to extract maximum in-
formation possible for ANGLE 4 software validation
for Nal detectors. Sources were positioned coaxially
with detector when measured. All the details about the
source to detector configurations for using point and
volumetric radioactive sources are listed in tab. 5,
while figs. 3 and 4 show schematic diagrams of Nal
detectors with an isotropic radiating point and volu-
metric sources, respectively.

Table 5. Relevant data for the detectors, radioactive sources and counting geometries used in the experiment

Ttem Detector Detector
2 x 2 [mm] 3 x 3 [mm]
Dy (detector diameter) 50.80 76.20
D, (detector height) 50.80 76.20
Detector dimensions ECy, (end cap thickness) 0.50 0.50
Ry, (face reflector layer thickness) 2.50 2.50
Ry, (side reflector layer thickness) 2.70 1.85
A 7.08 12.16
B 13.09 16.57
C 22.61 36.99
D 3.36 3.63
E 4.42 6.83
F 35.06 22.82
G 4.13 4.65
Plexiglas holder dimensions H 31.28 46.73
1 42.14 34.98
J 149.92 160.09
K 135.75 135.75
L 27.31 27.31
M 81.00 81.00
N 9.85 9.85
O 2.38 2.38
P 1.50 1.50
P4 204.15 204.42
P5 254.34 254.61
Point sources height p6 303.10 305.37
P7 355.63 355.90
P8 405.73 406.00
P9 456.39 456.66
P10 506.90 507.17
Sq4 (source diameter) 111.50 mm
S (source height) 21.45/31.59/41.83 mm
Volumetric sources W (wall thickness) 2.03
dimensions By, (bottom thickness) 2.03
Fy, (foot height) 2.00
Source volume 200/300/400 ml
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Table 6. Comparison between experimental and calculated (by ANGLE 4) detection efficiencies — summary

Detector 2 x 2 Detector 3 x 3
Source/reference| Energy range | Number of - - - -
source [keV] energies | Average arithmetic | Average absolute |Average arithmetic| Average absolute
discrepancy discrepancy discrepancy discrepancy
P5/P4 59.53-1408.01 11 1.01% 1.01% 0.50% 1.44%
P6/P4 59.53-1408.01 11 0.62% 1.62% 0.51% 1.72%
P7/P4 59.53-1408.01 11 1.53% 1.91% 1.40% 2.01%
P8/P4 59.53-1408.01 11 0.56% 1.96% —0.19% 2.19%
P9/P4 59.53-1408.01 11 —0.03% 2.71% 0.87% 2.57%
P10/P4 59.53-1408.01 11 0.73% 3.01% 0.94% 3.06%
200 ml/P4 121.78-1408.01 6 5.78% 5.78% -1.30% 1.48%
300 ml/P4 121.78-1408.01 6 5.59% 5.59% —0.69% 1.03%
300 ml/200 ml | 121.78-1408.01 6 —0.24% 0.49% 0.56% 0.66%
400 ml/P4 121.78-1408.01 6 5.32% 5.32% -1.61% 1.61%
400 ml/200 ml | 121.78-1408.01 6 —0.52% 0.55% —0.36% 0.95%
400 m1/300 ml | 121.78-1408.01 6 —0.28% 0.44% -0.92% 0.92%
Mean 1.67% 2.53% —0.03% 1.64%
CALCULATIONS AND RESULTS AUTHOR CONTRIBUTIONS

Detection efficiencies are calculated using AN-
GLE 4 software. Various sources are tried as reference
(calibration) ones, from which the detection efficien-
cies are calculated for the unknown sources — actually
calibrated ones as well, thus with known activities.

Very good agreement is obtained between exper-
imentally determined and calculated (using ANGLE
4) detection efficiencies for Nal detectors. The agree-
ment is apparently within experimental uncertainties.
There is no indication of bias or systematic errors.

Results for each detector and counting arrange-
ment are given in figs. 5 and 6 (for 2 x 2 and 3 x 3
inches detectors, respectively). Summarized results
are presented in tab. 6. Details can be found in the form
of extensive Excel file, which is available for down-
loading [41].

CONCLUSIONS

Experimental verification of ANGLE 4 software
for Nal detectors proved the reliability of the software.
As amatter of fact, this was expected with pretty much
confidence, since the core software performs much
more complex task of the same type —efficiency calcu-
lations for semiconductor detectors, the latter being
extensively tested during more than twenty years of
practical application in gamma-spectrometry labs all
around.

From the other side, this work also proved the re-
liability of both experimental set-up and procedure ap-
plied. These are intended to be further used in testing
and validating new upgrades of ANGLE software —
within scientific collaboration between the universi-
ties of Alexandria and of Montenegro.

ANGLE 4 software extension to Nal detectors
was developed by A. D. Dlabac. Experimental part of
the verification work was carried out by A. A. Thabet
and M. S. Badawi. All authors took part in planning
the work and in discussions during all phases of its
elaboration. The manuscript was conceived and writ-
ten by S. I. Jovanovi¢, M. S. Badawi, A. M. El Khatib,
and M. 1. Abbas. A. D. Dlabac performed data elabora-
tion and the graphical representation of results.
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Aoy3eng A. TABET, Anekcangap [. IIABAY, Cro6opan 1. JOBAHOBUh,
Moxamen C. BAJTABU, Hukona H. MUXAJBEBWh, Axmen M. EJI-XATUB,
Mona M. TAY A, Maxmyn . ABA3

EKCIIEPUMEHTAJIHA ITIPOBEPA CO®TBEPA ANGLE 4 ¥ OETY
INPOPAYYHA E®UKACHOCTU CHUHTUIALIMOHUX NETEKTOPA
TF'AMA 3PAYEIBA

Codrep ANGLE 3a nmpopauyn e(puKacHOCTH MOJTYNPOBOJHUYKHX JAETEKTOPA raMa 3padeha,
HIMPOKO PACHPOCTambEH U OJIAaBHO y YIIOTPeOu, HeJaBHO je HaArpabeH 3a kopulithe e KO CHUHTHIIAMOHUX
Nal getekTopa. OBa onuyja ¢puryputie y nociegwnoj Bep3uju ANGLE 4 u y pany je yKpaTKo IpuKa3aHa.
IToce6Ho je HarmameHa T3B. “AUCKpeTH3aIMja” KpUBe peepeHTHe e(pUKacCHOCTH, IIITO OTBapa MoryhHocT
ynotpede coprBepa ANGLE 4 na mojegmHayHUM rama-eHeprujama, Tj. 6e3 MpeTXofHor ofpebuBama
pedepentHe kpuBe. OBO JONPUHOCK HEe caMO 00Jb0j yHoTpeObUBOCTH U Behoj moy3gaHocTu MeTofe 1
coTBepa, HEro U CMamyje MOrYhHOCTH 3a cucTeMaTcKe rpelke. Paj je MpBEeHCTBEHO yCMepeH Ha
ekcnepuMenTanny nposepy coprsepa ANGLE 4 kop Nal perexropa. Kopumthena cy nBa ferekropa
pasnuuuTux KapakTepucTuka (2 x 2 u 3 x 3 uaya). KoMmepimjaauu KamuOprcaHu raMa-u3Bopu (TaYKacTh 1
OWIMHAPAYHN) W PAacTBOPU HPUNPEMIbEHH Y COINCTBEHO] HM3pajn (pa3tiiaskuBameM KalHMOpHCaHUX
pacTBopa), MEpeHH Cy Ha pa3iMuuTHM pacTojamuMa off feTekropa, y oncery 0-50 cm. ITocmaTpaH je
eHneprercku omcer 59-1408 keV. OBa pa3HOBPCHOCT yCIIOBa Mepema Koja ce Tu4e JIeTeKTopa, u3Bopa,
pacrojama u3BOp-AETEKTOP, pa3MaTpaHuX TamMa-eHepruja u Apyror, uMana je 3a nuib fa 06e306eau mTo
HIMpY €KCIepUMEHTAHy OCHOBY 3a IpoBepy MeToAe U codrTeepa. ExcnepumeHTanHo pobujeHe
edukacHocTu ynopebusase cy ca oHuM fo6ujeHuM npopauynom nomohy ANGLE 4. [Tocturayra je Beoma
noOpa carsacHOCT — YBEK y TpaHUIlaMa MEepHE HECUTYPHOCTH — YMMe je TOTBpheHa Moy31aHocCT copTBepa 3a
kopuithema y Nal KkBaHTHTaTHBHO] raMa-CIEKTPOMETPH]H.

Kmwyune peuu: zama-cileKilipomettipuja, CUUHIRUAAUUOHU OellleKIlop, UPOpa1yH e(hUKACHOCIIL,
cogpiieep ANGLE, ekciiepumeritiasna iposepa




