Vol.
XXIX, No. 3, Pp. 171-252
September 2014
UDC 621.039+614.876:504.06
ISSN 1451-3994
Back to Contents
|
Pages: 242-248
Authors: Riaz Hussain, Sikander M. Mirza, and Nasir M. Mirza
Abstract
The energy dependence on the intrinsic efficiency, absolute efficiency, full energy peak absolute efficiency and peak-to-total ratio have been studied for various wide band gap semiconductor detectors using the Geant4 based Monte Carlo simulations. The detector thickness of 1-4 mm and the area in 16-100 mm2 range were considered in this work. In excellent agreement with earlier work (Rybka et al., [20]), the Geant4 simulated values of detector efficiencies have been found to decrease with incident g-ray energy. Both for the detector thickness and the detector area, the increasing trends have been observed for total efficiency as well as for full-energy peak efficiency in 0.1 MeV-50 MeV range.
For
Cd1-XZnXTe, the detector response remained insensitive to changes in relative proportions of Zn. For various wide band gap detectors studied in this work, the detection efficiency of TlBr was found highest over the entire range of energy, followed by the HgI2, CdTe, and then by CZT.
Key words:
semiconductor detector, Geant4, absolute full-peak efficiency, wide band gap
FULL PAPER IN PDF FORMAT (1,75 MB)
|