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The effect of anisotropic scattering on the eigenvalues of a multiplying (c >1) and non-multi-
plying (c < 1) slab in one-speed neutron transport equation is studied. We have made some
calculations, not only for the cases c < 1 and 0 < g < 1, but also the cases of c >1 and –1<g<0
by using the linear and quadratic approximations of the Henyey-Greenstein scattering kernel.
The asymmetry parameter g consists of isotropic, backward and forward bias. An extensive
numerical survey is carried out for the eigenvalues in order to provide an accurate evaluation.
The numerical results indicate that the discrete eigenvalue increases with forward scattering
and decreases with backward scattering in expansions of linear and quadratic anisotropic scat-
tering.
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INTRODUCTION

There is an increasing need to take into account

the anisotropic scattering in many branches of physics.

The accurate evaluation of certain parameters needs to

take into account the anisotropy of neutral particle scat-

tering in the nuclear applications. The eigenvalue spec-

trum of the transport operator consists of two parts.

They are the discrete spectrum (vj > 1) and the continu-

ous spectrum (–1 < v < 1). We present here an approxi-

mation method and corresponding computer code to

compute all eigenvalues for linear and quadratic

anisotropic expansion of the Henyey-Greenstein scat-

tering kernel.

An important parameter in this analysis is the

eigenvalue which has been the subject of many recent

investigations [1-3]. The diffusion coefficient, or the

diffusion length which is closely related to the discrete

eigenvalues, can be inferred from the solution of the in-

finite medium transport problem with a given scattering

kernel and absorption cross-section [4-7]. The diffusion

coefficient is obtained either from the P1 approximation

or from the asymptotic diffusion approximation of the

transport equation. The diffusion length is produced by

using the high order approximation in transport equa-

tion. In the latter case one essentially solves eq. (4) to

obtain the discrete eigenvalue from which the diffusion

length and diffusion coefficient are inferred. Since vj

determines the rate of decrease of the asymptotic flux

with distance, as is apparent from eq. (7), it is here

called the asymptotic diffusion length. The diffusion

length L has already been defined and it has been shown

that this can be easily calculated for any medium. While

diffusing through a medium, a neutron follows a

zig-zag path and migrates a certain distance from its ori-

gin before being absorbed. This is a standard practice in

neutron transport studies [8].

There is a difference between the photon trans-

port problem and the neutron transport. The scattering

of near infrared photons in soft tissues is highly peaked

in the forward directions. The scattering distribution for

neutrons, in most of the applications, is isotropic or

nearly linear anisotropic for almost all the materials of

interest. For these purposes we consider the linear and

quadratic scattering of Henyey-Greenstein kernel. The

Henyey-Greenstein kernel is given as
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where m0 is equal to cos q0. The q0 describes the angle

between the direction of the neutron before and after

the collision. The asymmetry factor g is positive if the

scattering anisotropy is biased in the forward direc-

K. Kacira, et al.: The Anisotropic Approximations of the Henyey-Greenstein ...
102 Nuclear Technology & Radiation Protection: Year 2014, Vol. 29, No. 2, pp. 102-107

* Corresponding author; e-mail: fyasa@ksu.edu.tr



tions and g is negative if the bias is backward [1, 9, 10].

The asymmetry factor g is also equal to the average of

cosine of the scattering angle. In many cases, g as-

sumes a value that is close to unity in the light trans-

port. But g is not close to unity in eq. (1) for neutron

transport calculation. Either g should be limited or the

Henyey-Greenstein scattering should be modified to

obtain an agreement with a respect to the reference

value.

In this study we want to use the linear and qua-

dratic approximations of the Henyey-Greenstein scat-

tering in neutron transport calculation. This study ex-

pands our earlier work [3] by using the negative

asymmetry values, and proves that the eigenvalue ex-

ists for some values of the asymmetry parameters and

some absorption ratios.

THE TRANSPORT EQUATION

AND SOLUTION

The approximations of the

Henyey-Greenstein scattering kernel

The scattering law of interaction between the ra-

diation and the particle may be written as f ( , )
� �

W W� dW

and quantitatively is the probability that a photon inci-

dent on the particle in the direction denoted by the unit

vector �
�

W will be scattered into the solid angle dW

about the unit vector
�

W. For many media of interest we

can write f ( , )
� �

W W� dW= f(cos q0) where cos q0=
� �

W W� �,
f(cos q0) is predicted or measured experimentally by

the Henyey-Greenstein, Rayleigh or Mie scattering

theories.

There have been many attempts to find rational

approximations to f(cos q0) and the formulate approxi-

mate models which contain the essential features. Typ-

ical of the former approach is that of Henyey and

Greenstein who propose eq. (1). This has the useful

property in terms of Legendre polynomials that is
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This means that when eq. (1) is expanded in

powers of g, the coefficient of (2l + 1)gl is Legendre

polynomials, where the mean cosine of the scattering

angle m0 is defined as m0 � g. Thus, as g varies from

–1 to 1 we trace out the transition from pure back scat-

tering through isotropy to purely forward scattering. It

is known that the first three terms in eq. (2) are suffi-

cient for neutron transport in nuclear reactor theory.

For l = 0, eq. (1) corresponds isotropic; for l = 1, eq. (2)

corresponds linear anisotropic scattering; for l = 2, eq.

(2) corresponds quadratic anisotropic scattering [7,

11].

The Henyey-Greenstein scattering is consider-

ably larger, and depends strongly on g. This scattering

phase function is commonly used in studies of light

propagation and radiative transfer. The g gets values

between –1 < g < 1, such as, 0.65 < g < 0.95 in biologi-

cal tissues. The scattering is not strongly anisotropic

for nuclear reactor calculation. The anisotropic order

and anisotropy factor g should be chosen correctly.

We begin our analysis by considering the trans-

port equation for a neutron population in multiplying

(c > 1) and non-multiplying (c < 1) systems. For con-

venience we take the origin at the center of the slab so

that the slab extends from x = –d/2 to x = d/2. The sys-

tem is surrounded by a vacuum. Then, with the con-

ventional notation, the starting linear transport equa-

tion for neutrons of one speed can be written as [4,

12-14]
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Here, the y(x, m) is the neutron flux density de-

pending on x and m (m is the cosine of the angle be-

tween the positive x-axis, and
�

W), with dW = dm'dj.

The q andj are the axial and azimuthal angles of
�

W, re-

spectively. All distances are measured in units of the

neutron mean free path (mfp). The �s and �t denote the

macroscopic scattering and total cross-sections in the

time independent system. The neutron flux density

may be assumed to decay exponentially with space for

all
�

W. The recalling of the addition theorem for

Legendre polynomials in terms of spherical harmon-

ics, and plugging this expansion into eq. (2) result in

the following expression
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Here, the criticality factor and a change of scale

of the variable are considered as c � �� �( )ns f /St

and xSt 	 x.

The spherical harmonics method

The knowledge of neutron flux distributions is

important in the design of experiments and to the utili-

zation of the nuclear reactor. Knowing the neutron flux

at different positions in the reactor allows researchers

and reactor operators to determine how long and

where in the core samples must be irradiated in order to

achieve a desired activity.

According to the above section, it is sufficient to

solve the corresponding integro-differential eq. (4).

For the solution, the angular flux is expanded in a se-

ries of Legendre polynomials as
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This expansion and the scattering function given

by eq. (1) can now be substituted into eq. (4) in order to

obtain the function fn(x�. By multiplying both sides of

the resulting equation by Pm(m), integrating over m and

utilizing the orthogonally properties and the recursion

relations of Legendre polynomials [4, 8, 13], after some

rearrangement we have
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with the requirement that f–1(x) is zero. The spherical

harmonics approximation (PN) may be defined by con-

sidering the first N + 1of these equations and setting

dfN + 1(x)/dx = 0. One may employ the well-known pro-

cedure of seeking a solution of the homogeneous eq.

(6) in the form [4, 5]
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where the Gn(v) are some constants. Each of the fn(x)

defined in eq. (7) will satisfy eq. (6) provided that the

characteristic PN equations
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are satisfied. The essential idea of the PN method is that

fN + 1(v) = 0, i. e., the permissible eigenvalue vj, is the jth

positive zero of GN + 1(v) and Gn(–v) = (–1)nGn(v). The

determination of the roots is obtained using the Maple.

All calculations are reported in tabs. 1-4.

A physical interpretation of the

diffusion length

The flux solution derived in eq. (7) can be em-

ployed to develop a physical interpretation of the dif-

fusion length L. The mean straight distance x travelled

by the neutrons from their point of thermalization to

their final absorption can be expressed mathematically

as the neutron normalized distribution function
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Substituting the relationship for the flux in eq.

(7), eq. (9) becomes

x L� (10)

Therefore, the diffusion length can be inter-

preted as mean straight distance travelled by the ther-

mal neutrons from their point of thermalization to the

location where they are absorbed.

In similar way, the mean square straight distance

can be determined as

L x2 21

2
� (11)

The square of the diffusion length can also be in-

terpreted as twice the mean square straight distance in

plane geometry.

For point sources

L
r

�
2

(12)

and

L2 21

6
� r (13)

THE NUMERICAL RESULTS

AND CONCLUSION

Many important problems in physics and practi-

cal applications in technology involve the motion of

particles through an object or a medium. We compute

the eigenvalue corresponding to the diffusion length

of eq. (8b) by using the transport equation. We con-

sider the linear and quadratic approximations of the

Henyey-Greenstein scattering. In case of the linear

anisotropy, the discrete and continuous solutions are

given in tabs. 1-2. For the quadratic anisotropy, all

eigenvalues are calculated and only discrete

eigenvalues are given in tabs. 3-4. We discuss the nu-

merical computation of the discrete eigenvalue vj, and

other continuous eigenvalue v, truncating these expan-

sions after N = 10 terms.

The discrete eigenvalue |vj| (in units of mean free

path) is the largest real root or purely imaginary root of

eq. (8b). The discrete eigenvalue vj is 5.945745254

and others continuous eigenvalue v are 0.17449,

0.50251, 0.76994, 0.94369 for c = 0.99 and g = 0.05 in

tab. 1. For c = 1.01 and for g = 0.05, the discrete

eigenvalue is 5.90147i. The absolute value of imagi-

nary eigenvalue should be taken to obtain the diffusion

length L. The discrete eigenvalue vj is known as diffu-

sion length and characterizes the diffusive properties

of the system. The diffusion coefficient D is then given

by the expression [7, 8, 15]

D v cj� �2 1( ) (14)

Tables 1 and 3 give eigenvalues of multiplying

(c > 1) and non-multiplying medium (c < 1) for different

free forward parameter g. Tables 2 and 4 give

eigenvalues of multiplying and non-multiplying medium

for backward scattering.
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A nuclear reactor is the complex system consist-

ing of fuel, moderators, coolant, control rods, and en-

vironmental structures. Since the reactor parameters

are important for nuclear reactor systems, the values of

parameters g and c should be adjusted. The variation

of correct eigenvalue is given in tables. In fact, the ex-

pected roots do not appear if the parameter g is larger

as seen in tab. 1. The accurate numerical results are ob-

tained for low values of parameter g.

It is interesting to note that vj increases almost

monotonically with the asymmetry parameter g. This

is understandable. By increasing values of g, the parti-
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Table 1. Discrete and continuous eigenvalue for forward scattering g � 0, N = 10

c g = 0 g = 0.05 g = 0.1 g = 0.2 g = 0.3 g = 0.4 g = 0.5

0.5

0.16083
0.46685
0.72734
0.91623
1.04374

0.16085
0.46715
0.72840
0.91791
1.05282

0.16086
0.46744
0.72942
0.91944
1.06256

0.16088
0.46802
0.73135
0.92213
1.08411

0.16091
0.46859
0.73314
0.92437
1.10860

0.16093
0.46914
0.73481
0.92626
1.13629

0.16096
0.46968
0.73637
0.92785
1.16756

0.99

0.17449
0.50251
0.76994
0.94369
5.79672

0.17449
0.50251
0.76994
0.94369
5.94574

0.17449
0.50251
0.76994
0.94369
6.10687

0.17449
0.50251
0.76994
0.94369
6.47281

0.17449
0.50251
0.76994
0.94369
6.91355

0.17449
0.50251
0.76995
0.94369
7.45863

0.17449
0.50252
0.76995
0.94369
8.15700

1.01

0.17508
0.50385
0.77109
0.94411
5.75053i

0.17508
0.50385
0.77109
0.94411
5.90147i

0.17508
0.50385
0.77109
0.94411
6.06495i

0.17508
0.50385
0.77109
0.94411
6.43731i

0.17508
0.50385
0.77109
0.94411
6.88792i

0.17508
0.50385
0.77109
0.94411
7.44869i

0.17508
0.50385
0.77110
0.94411
8.17333i

2.0

0.20673
0.54790
0.79775
0.95218
0.42923i

0.20715
0.55040
0.80023
0.95315
0.44763i

0.20758
0.55321
0.80319
0.95437
0.46904i

0.20850
0.56003
0.81129
0.95809
0.52530i

0.20948
0.56911
0.82442
0.96577
0.61516i

0.21054
0.58184
0.84824
0.98909
0.80349i

0.21168
0.60085
0.88861
1.26551
...........

Table 2. Discrete and continuous eigenvalue for backward scattering g < 0, N = 10

c g = –0.05 g = –0.1 g = –0.2 g = –0.3 g = –0.4 g = –0.5

0.5

0.16082
0.46655
0.72625
0.91440
1.03531

0.16081
0.46624
0.72512
0.91241
1.02750

0.16078
0.46561
0.72273
0.90793
1.01369

0.16076
0.46497
0.72017
0.90277
1.00215

0.16073
0.46431
0.71744
0.89699
0.99269

0.16071
0.46364
0.71453
0.89074
0.98504

0.99

0.17449
0.50251
0.76994
0.94369
5.65838

0.17449
0.50251
0.76994
0.94369
5.52949

0.17449
0.50251
0.76994
0.94369
5.29611

0.17449
0.50251
0.76994
0.94369
5.08999

0.17449
0.50251
0.76994

0.943692124
4.906205566

0.17449
0.50251
0.76994
0.94369
4.74099

1.01

0.17508
0.50385
0.77109
0.94411
5.61062i

0.17508
0.50385
0.77109
0.94411
5.48045i

0.17508
0.50385
0.77109
0.94411
5.24516i

0.17508
0.50385
0.77109
0.94411
5.03779i

0.175087540
0.503851605
0.771091288
0.944111714
4.85322435i

0.17508
0.50385
0.77109
0.94411
4.68756i

2.0

0.20632
0.54565
0.79565
0.95139
0.41318i

0.20593
0.54363
0.79385
0.95074
0.39900i

0.20517
0.54012
0.79092
0.94973
0.37495i

0.20446
0.53718
0.78864
0.94898
0.35518i

0.203796810
0.534692699
0.786819615
0.948404243
0.33852787i

0.20316
0.53254
0.78532
0.94794
0.32423i

Table 3. Selected discrete eigenvalues with quadratic anisotropy for forward scattering g � 0, N = 10

c g = 0 g = 0.05 g = 0.1 g = 0.2 g = 0.3 g = 0.4 g = 0.5

0.5 1.04374 1.05309 1.06367 1.08869 1.11928 1.15616 1.20043

0.99 5.79672 5.94580 6.10712 6.47388 6.91626 7.46425 8.16773

1.01 5.75053i 5.90141i 6.06470i 6.43623i 6.88517i 7.44296i 8.16229i

2.0 0.42923i 0.44720i 0.46707i 0.51445i 0.57713i 0.66687i 0.81306i

Table 4. Selected discrete eigenvalues with quadratic anisotropy for backward scattering g < 0, N = 10

c g = –0.05 g = –0.1 g = –0.2 g = –0.3 g = –0.4 g = –0.5

0.5 1.03557 1.02854 1.01775 1.01105 1.01105 1.00924

0.99 5.65844 5.52971 5.29699 5.09200 4.90995 4.74734

1.01 5.61056i 5.48022i 5.24428i 5.03580i 4.84953i 4.68134i

2.0 0.41283i 0.39771i 0.37051i 0.34628i 0.32403i 0.30301i



cles direct in the forward directions. When the nega-

tive values of g increase, the variation of vj starts to de-

crease. The asymmetry parameter g should be limited

as given in tables for the neutron transport applications

with the Henyey-Greenstein scattering. In this study, g

should be ranged from –0.5 to 0.5. Our approxima-

tions are not good enough for cases –1 < g < –0.5 and

0.5 < g < 1. If scattering is strongly asymmetric (0.5 <

g < 1) in some applications, the approximations of the

Henyey-Greenstein scatering need more terms than l

> 2 in eq. (2).

Sahni, Dahl, and Sjostrand [7] have given rep-

resentative values of the discrete eigenvalues and dif-

fusion coefficient for some value of g and the case of

c < 1. They used the Case method to solve the transport

equation. In this study we use PN method. We have

made some calculations not only for the case c < 1

but also for the case c > 1 by using approximations of

the Henyey-Greenstein. When obtained results are

compared to the values of references [4, 8-10], they are

quite similar.

We have proved the existence of the discrete

eigenvalues, and hence the diffusion lengths for the

linear and quadratic anisotropic scattering, given by

the Henyey-Greenstein kernel. The PN method is quite

general and applicable to all non-negative scattering

kernels. If one needs diffusion coefficient, it can be

easily and accurately obtained from the diffusion

length in eq. (8).
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ANIZOTROPNE APROKSIMACIJE HENI-GRIN[TAJNOVE FAZNE
FUNKCIJE U TRANSPORTNOJ JEDNA^INI NEUTRONA

Prou~avan je uticaj anizotropnog rasejawa na svojstvene vrednosti jednobrzinske
neutronske jedna~ine za plo~u sa umno`avaju}im (c > 1) i apsorbuju}im (c < 1) svojstvima.
Kori{}ewem linearne i kvadratne aproksimacije Heni-Grin{tajnovog kernela rasejawa,
obavqeni su prora~uni ne samo za slu~ajeve c < 1 i 0 < g < 1, ve} i za c > 1 i –1 < g < 0. Parametar
asimetrije g usmerava rasejawe da bude izotropno, unazad, ili unapred orijentisano. U ciqu
ispravne procene ta~nosti da je {irok pregled svojstvenih vrednosti. Numeri~ki rezultati
ukazuju da se, pri linearnoj i kvadratnoj aproksimaciji anizotropnog rasejawa, diskretne
svojstvene vrednosti uve}avaju kada je rasejawe unapred, a smawuju za rasejawe unazad.

Kqu~ne re~i: Heni-Grin{tajnovo rasejawe, transportna jedna~ina, svojstvena vrednost,
..........................difuziona du`ina


