NATURAL AND ARTIFICIAL (90Sr) RADIONUCLIDES IN SOME CARBONATED MINERAL WATERS USED IN SERBIA

by

Marija M. JANKOVIĆ¹, Nataša B. SARAP¹, Dragana J. TODOROVIĆ¹, and Jasminka D. JOKSIĆ²

¹Radiation and Environmental Protection Department, Vinča Institute of Nuclear Science, University of Belgrade, Belgrade, Serbia ²Radiation Protection and Nuclear Safety Agency, Belgrade, Serbia

> Scientific paper DOI: 10.2298/NTRP/1303284J

A radiological characterization of 7 different carbonated mineral water samples collected in the local supermarkets in the area of Belgrade (produced in Serbia) was carried out. Analysis included determination of gross alpha and gross beta activities. The obtained results showed that the natural activity concentrations of alpha and beta emitting radionuclides in carbonated mineral water samples were within World Health Organization recommended levels, except for the Heba Strong and Kiseljak samples where the beta activity exceeds 1 Bq/L. For these two water samples gamma spectrometry analysis was performed as well as determination of ⁹⁰Sr by oxalic method.

The instrumentation used to count the gross alpha and gross beta activities, as well as for ⁹⁰Sr, was α/β low level proportional counter Thermo Eberline FHT 770 T. Gamma spectrometric measurements were performed using a HPGe Canberra detector with a counting efficiency of 20%. The annual effective dose equivalent due to ingestion of investigated waters was calculated for age group >17, and obtained values are lower than 0.1 mSv recommended reference level. Finally, a comparison of the investigated waters with worldwide data was made.

Key words: carbonated mineral water, radioactivity, ⁹⁰Sr, annual effective dose

INTRODUCTION

According to the density of occurrences and the diversity of physical and chemical features of mineral waters, the territory of Serbia belongs to one of the most resourceful areas of the European continent, but only a small quantity of these mineral waters is used for bottling. Bottled waters in Serbia are usually HCO₃, with Na or Ca as a dominant cation, and in a large range regarding total dissolved solids [1]. The quality of water is important in environmental studies because of its daily use for human consumption and its ability to transport pollutants. According to a UNSCEAR report [2], drinking water is considered to be an important factor in increasing the natural radiation exposure in humans. Most commonly, natural earth radionuclides have internal effects, i. e., they enter the human body through inhalation or ingestion (through drinking water and food of plant or animal origin), and they irradiate human cells internally, which leads to considerable radiation load of human population in certain areas [3].

In general, gross alpha and gross beta analysis which is one of the simplest radio analytical procedures is used as the first step of the radiological characterization of drinking waters as a screening method in the field of radioecology, environmental monitoring and industrial applications as well. Its main advantages are the relatively low costs and simplicity. Nevertheless, the determination of gross alpha and gross beta activities faces some specific problems because a mixed radionuclide composition has to be simultaneously measured. Drinking water samples may contain different natural alpha (²³⁸U, ²³⁴U, ²³²Th, ²²⁶Ra, and ²¹⁰Po) and beta emitters (⁴⁰K, ²²⁸Ra, and ²¹⁰Pb), and artificial radionuclides (241Am, 90Sr) in various concentrations. Most of them are members of a complex decay chain. Naturally occurring alpha or beta emitting radionuclides are frequently dissolved in domestic water supplies and their concentrations vary over an extremely wide range, mainly depending upon the amount of radioelements present in bedrock and soil the water comes in contact with [4]. However, from the viewpoint of radiation hygiene, the result of many worldwide surveys [5-7] indicate that only ²²²Rn and the long-lived radium isotopes ²²⁶Ra and

^{*} Corresponding author; e-mail: marijam@vinca.rs

²²⁸Ra have been found in concentrations that may be of health concern. The contribution of drinking water to the total exposure is very small and is due largely to naturally occurring radionuclides in the uranium and thorium series. World Health Organization recommends for the limits of gross alpha and gross beta radioactivity concentration in drinking water below 0.5 and 1.0 Bq/L, respectively [8]. In Serbia, according to current regulations [9], radioactivity concentrations in drinking water for gross alpha and gross beta should be 0.5 and 1.0 Bq/L, respectively. If one of the guideline values is exceeded, radionuclides have to be identified by alpha and/or gamma spectroscopy, and their individual activity concentrations need to be measured. These guidelines ensure an exposure lower than 0.1 mSv per year assuming a water consumption rate of 2 L/d. If the estimated dose is higher than 0.1 mSv per year the reduction in consumption or radionuclide concentration is necessary.

Radiostrontium is one of the most hazardous fission products that have reached the natural environment in larger quantities after atmospheric nuclear weapon tests and large-scale nuclear accidents like Chernobyl. Once released to either air, soil or freshwater the radionuclide can find their way into the food chain leading to the contamination of human food. As the chemical behavior of Sr is very similar to that of Ca, strontium can be concentrated in bones with a high risk of development of leukemia [10].

Strontium-90 is a man-made radioactive isotope of strontium. It decays with a half-life of 29 years to yttrium-90 and emits a beta particle (an energetic electron) in the decay process. The energy of the beta particles ($E_{\beta, \text{max}} = 546 \text{ keV}$) is sufficient to produce ionizations and excitations of molecules in their path. The average range of these beta particles in water is less than 0.2 cm. Because of the short range of the beta particles, 90Sr outside of the body does not pose much radiation hazard, except in large quantities and in equilibrium with 90Y (half-life 64.4 hours), which produces a stronger beta radiation ($E_{\beta, \max} = 2.283 \text{ keV}$). Due to the pure β -emitting property of ⁹⁰Sr, determination of this isotope without prior chemical isolation and purification is impossible. Among interference elements such as calcium, barium, magnesium and radium, the most significant interfering element is calcium which is contained in gram amounts in most environmental samples, while Sr is contained in milligram amounts or even less. 90Sr decays according to the scheme [11]

$${}^{90}_{38} \operatorname{Sr} \stackrel{\beta \ (0.54 \text{ MeV})}{}^{90}_{39} \operatorname{Y} \stackrel{\beta \ (2.28 \text{ MeV})}{}^{90}_{40} \operatorname{Zr} (1)$$

Numerous methods for the determination of ⁹⁰Sr have been developed including: solvent extraction of ⁹⁰Y with tributyl phosphate (TBP) and beta counting [12], separation of ^{89, 90}Sr, and ⁹⁰Y and determination by liquid scintillation counting (LSC) [13] and ion-ex-

change separation of Ca and Sr and measurement of ⁹⁰Sr by beta counting [14]. In this paper oxalate method for determination ⁹⁰Sr in water samples was applied.

Determination of natural and artificial radioactivity levels in drinking water has importance because it allows the assessment of population exposure to radiation by the consumption of the water.

The aim of this study was to determine the level of activities in carbonated mineral waters from various manufacturers. The measurement results found in this study can thus be used to determine effective dose rates stemming from ingestion of naturally occurring radionuclides in water. The dose estimates presented here were based on a worst case scenario by considering that gross activities come only from radium isotopes that have the most conversion factors. This assumption provides information on the maximum dose limits that may occur from ingestion of carbonated water.

MATERIALS AND METHODS

Carbonated mineral water samples selected for this study are some of the most commonly produced and consumed carbonated bottled waters in Serbia, and they were all purchased during April 2012 from local supermarkets in the Belgrade area. Before measuring the activity concentration, all samples were first analyzed for pH and conductivity. The pH was measured by Lina pH meter PHS-3BW Microprocessor using combined glass electrodes. Calibration of the instrument was carried out by 4, 7, and 10 pH standard solutions. The conductivity of the samples was measured by Conductometer (HANNA Combo).

Procedure for gross alpha and gross beta activity

Volumes of 3 l of bottled waters were evaporated to a small volume, under infrared lamp. The remaining part was heated to dryness at 450 °C [15]. The residues were transferred quantitatively to a stainless-steel planchet. Measurements were performed immediately after preparation. The counting time was 3600 s for gross alpha and gross beta activities.

Gross alpha and beta activity in water samples were determined by $\alpha \beta$ low level proportional counter Thermo Eberline FHT 770 T. Calibration was performed by using standard source of ⁹⁰Sr (EM145, Prague) with an activity of 189.4 Bq on the day August 1st, 2011, for beta activity and standard source of ²⁴¹Am (EM445, Prague) with an activity of 224 Bq on the day August 1st, 2011, for alpha activity. The counting gas was a mixture of 90% argon and 10% methane. The counting efficiencies for the system are 23% for alpha radiation and 33% for beta radiation. The background of each detector was determined by counting an empty planchet for 3600 s.

The accuracy and reproducibility of gas proportional counter were verified on a periodic basis-every week. Total background count rate without a source is monitored to verify that the detector and shield have not been contaminated by radioactive materials. Alpha and beta efficiencies of gas proportional counter were checked with ²⁴¹Am and ⁹⁰Sr sources, respectively.

Some of the properties of the detector are influenced by the sample preparation when water is evaporated obtaining the final source in dry residue or precipitate form. Due to energy loss and self absorption of the alpha and beta particles in the sample matrix, their counting efficiency is far less than 100%. It should also be mentioned that no energy resolution is possible with the proportional counters and it is not suitable to determine volatile radionuclides (³H, ²¹⁰Po). In spite of the disadvantages, proportional counters are very useful for high throughput screening when fast quantitative analyses are required. Gross alpha and gross beta activity can be determined simultaneously which reduces the time of the analysis. Low background can be obtained, which makes proportional counters effective for measuring environmental level radioactivity. The spillover between alpha and beta signals is low, even below statistical significance can be achieved. Several detectors (6) can be installed into one detector housing such that more samples can be measured simultaneously.

Gross alpha and gross beta activity was calculated using the following equation

$$A_{\alpha\beta} \quad \frac{I}{V} \tag{2}$$

where $A_{\alpha\beta}$ [BqL⁻¹] is the activity of the sample, V- the volume of the sample (L) which corresponding to the mass of solid residue, and I is given by the equation

$$I \quad \frac{N \quad B}{ef} \tag{3}$$

where $N[s^{-1}]$ is the count rate for the sample, $B[s^{-1}]$ – the background, and *ef* – the efficiency of the detectors for alpha and beta measurements.

Minimum detectable activity was calculated by eq. (4)

$$MDA \quad \frac{LLD}{V} \tag{4}$$

where $LLD [s^{-1}]$ is the detection limit, and V- the volume of the sample.

Procedure for gamma measurements

All water samples were boiled to reduce their volume from approximately 10000 mL to 200 mL and then poured into 200 mL cylindrical polyethylene vials. The samples were stored for 1 month to reach the radioactive equilibrium. Gamma spectrometric mea-

surements were performed using a HPGe Canberra detector with a counting efficiency of 20%. Geometric efficiency for water matrices in the plastic bottle of 200 mL was determined by a reference water material (Czech Metrological Institute, Praha, 9031-OL-116/8, type ERX) spiked with a series of radionuclides (²⁴¹Am, ¹⁰⁹Cd, ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ⁸⁸Y, ¹¹³Sn, ⁸⁵Sr, ¹³⁷Cs, and ²¹⁰Pb) with total activity of 114.9 kBq on the day of March 3, 2008. The spectra were analyzed using the program GENIE 2000. The activity of ²²⁶Ra and ²³²Th was determined by their decay products: ²¹⁴Bi (609 keV, 1120 keV and also 1764 keV), ²¹⁴Pb (295 keV and 352 keV), and ²²⁸Ac (338 keV and 911 keV), respectively. The activities of ⁴⁰K were determined from its 1460 keV y-line. Counting time interval was 60000 s. The background spectrum was recorded regularly after or before the sample counting, with empty 200 mL cylindrical polyethylene vials. The specific activity, A, of the radionuclides in the samples was calculated using the equation

$$A = \frac{N}{tP_{\gamma} efV}$$
(5)

where *t* [s] is the counting time, and P_{γ} [%] – the probability of gamma decay. Minimum detectable activity was calculated by the equation

$$MDA \quad \frac{LLD}{tP_{\gamma} \, efV} \tag{6}$$

where *LLD* 271 4.65 \sqrt{B} . The error of single activity measurement was estimated by standard procedure of additive errors. It is in the range from 8 to 11% due to the level of activity. The major contribution to the total activity come from the errors in geometric efficiency estimation (about 6%) and photo peak counts estimation (about 3-4%), while the errors in all the other parameters of activity evaluation (mass, counting time, interval, probability of gamma disintegration) contribute to less than 1%.

The accuracy and reproducibility of gamma spectrometry systems were verified on a periodic basis - every week. Total background count rate without a source is monitored to verify that the detector and shield have not been contaminated by radioactive materials. Energy calibration is checked in whole region before applying usual QC procedure for gamma spectrometry measurement. The total activity of calibration source will check the efficiency calibration and the general operating parameters of the gamma spectrometry system (source positioning, contamination, library values, and energy calibration). The detector-shield background, detector efficiency, peak shape, and peak drift are measured and verified if they are within the warning and acceptance limits. For that purpose 60Co source was used. All radionuclide sources are bought at Czech Metrological Institute which is traceable to BIPM (Bureau International des Poids et Measures).

Procedure for determination of ⁹⁰Sr in water samples

A radiochemical procedure was applied to the separation and determination of ⁹⁰Sr in water samples. Water samples in which ⁹⁰Sr were determined were boiled to reduce their volume from approximately 10000 mL to 200 mL. The method consists of oxalate departing calcium from strontium [16], firing till oxide, and usage of Al as collector for ⁹⁰Y. The samples were stored for 18 days to reach the radioactive equilibrium between ⁹⁰Sr and ⁹⁰Y. After 18 days ⁹⁰Y departs on collector Al(OH)₃, which is then firing till oxide and after that (half-life period 64.2 hours) on α/β low level proportional counter. The counting time was 3600 s. The specific activity of the ⁹⁰Sr, A_{Sr} in Bq/L, in the water samples was calculated using the equation

$$A_{\rm Sr} = \frac{(N-B)e^{\frac{\ln 2}{T_{V2}}t}}{efp_{\rm AL}pV}$$
(7)

where $T_{1/2}$ [h] is the half-life of ⁹⁰Y, t [h] – the time since separation of ⁹⁰Y, p_{Al} – the yield of Al, and p – the yield of method. Minimum detectable activity was calculated by

$$MDA \quad \frac{LLD}{V} e^{\frac{\ln 2}{T_{1/2}}t} \tag{8}$$

RESULTS AND DISCUSSION

Table 1 reports on pH, conductivity, dry residue, and main dissolved ions concentrations. Total dissolved solids as a dry residue at 180 °C ranged between 323 and 3200 mg/L. Six investigated waters belong to the medium-mineral class (residue >500 mg/L) except for a Golijska Bistrica water, which belong to the low-mineral class (residue 50-500 mg/L). Difference

in the conductivity value is related to the mineral salts and the origin of the source. High conductivity value for water Minaqua confirms its natural mineralization. The value for conductivity was in a range from 81 to 1755 S/cm. According to Regulation on Quality and other Requirements for Natural Mineral Water, Spring Water and Bottled Drinking Water [17], recommended value for conductivity should be up to 2500 S/cm. Also, the pH value for Minaqua water is the lowest compared to other investigated sample. All water samples have pH values which are weakly acid, because of the formation of carbonic acid by the addition of CO₂. All waters are bicarbonate (HCO₃), except Golijska Bistrica. Content of cation is in a large range, in some waters Na and K ions prevail, in some Ca ions, and Mg is the cation that prevails only in one sample (Mivela). Magnesium water is very rare which makes this water very special.

Table 2 shows the results for gross alpha and gross beta activity concentrations from all the analyzed samples. Gross alpha activity in three water samples was lower than the minimum detectable activity. The activity values of the rest water samples were higher than MDA and below than recommended level of 0.5 Bq/L [9] for gross alpha activity. A good correlation is found between gross alpha activity and dry residue (r = 0.77) (fig. 1). Gross beta activities ranged between 0.317 to 2.219 Bg/L. Table 2 shows that the gross beta activity is always higher than the gross alpha activity. The highest gross beta activities, 2.219 and 2.080 Bq/L, was observed in the most mineralized waters (Karadjordje and Heba Strong). A good correlation was found between gross beta activity and dry residue (r = 0.78) (fig. 2). These results show that gross alpha and gross beta activity concentrations are related to the dry residue of the samples, *i. e.* to the content of salts in the analyzed waters.

Due to the fact that the gross beta activity in samples Karadjordje and Heba Strong is higher than the

ĺ	Table 1. Chemicl	param	eters of six	brands o	of carbonate	ed mineral	water sampl	es [mgL ⁻¹]	
- 6							1	1	_

Brand	Knjaz Miloš	Minaqua	Mivla	Premia	Heba Strong	Karađorđe	Golijska Bistrica
pH	5.63	5.17	5.94	5.47	6.05	6.10	5.44
Dry residue	1037	1184	1622	848.5	3200	1710	323
Conductivity/µScm ⁻¹	108	1755	103	84	140	150	81
Ca ²⁺	106	31.8	25.2	232.4	65	104	57.7
K ⁺	16.7	4	9.5	5.6	56	53	0.897
Mg ²⁺	60	20.7	333.2	18.2	14	63	37
Na ⁺	247	397.7	123.4	56	1059	250	4.76
CI	10	306.4	14	14.4	57	54	4.2
Fe ^{2+/3+}	< 0.05	—	—	_	-	_	—
F ⁻	1.3	—	0.4	_	1.45	_	—
Selen						< 0.001	
Γ	_	0.94	—	_	-	-	
SO ₄ ²	12.2	-	2.1	11.3	198	61	19.1
HCO ₃	1183	757	2002.8	988	3110	1260	_
Content of CO ₂ [min]	3000	3000	3000	3000	3000	2200	3000

Brand	Gross alpha activity concentration [BqL ⁻¹]	Gross beta activity concentration [BqL ⁻¹]		
Knjaz Miloš	0.178 0.069	0.921 0.122		
Minaqua	<0.156	0.407 0.082		
Mivela	<0.131	0.649 0.095		
Premia	<0.082	0.449 0.074		
Heba Strong	0.460 0.184	2.080 0.440		
Karadjordje	0.372 0.087	2.219 0.161		
Golijska Bistrica	0.099 0.032	0.317 0.044		

Table 2. Gross alpha and gross beta activity concentrations in all analyzed waters

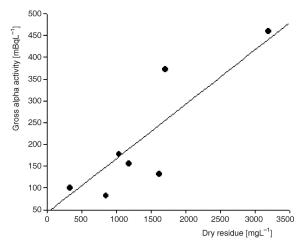


Figure 1. Correlation between the dry residue and gross alpha activity

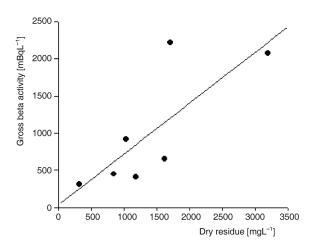


Figure 2. Correlation between the dry residue and gross beta activity

recommended level of 1 Bq/L, it is necessary to performed gamma spectroscopy. The specific activities of natural radionuclides ²²⁶Ra, ²³²Th, ²³⁵U, and ²³⁸U and artificial radionuclide ¹³⁷Cs in these samples were below the detection limits of our measuring system. Serbian law recommends that activity concentration in drinking water should not exceed 490 mBq/L for ²²⁶Ra and 590 mBq/L for ²³²Th [9].

Radionuclide ⁴⁰K is detected in both samples and its concentration was 1.63 0.33 Bq/L for Heba Strong

and 1.93 0.41 Bg/L for Karadjordje sample. Since the ⁴⁰K participate in total beta activity with 89%, we may conclude that the gross beta activity of 2.219 (Karadjordje) and 2.080 Bq/L (Heba Strong) originates mainly from ⁴⁰K. However, it is evident that in addition to ⁴⁰K in these samples there are also some other beta emitters present. Because of that in these two samples ⁹⁰Sr was also determined. Concentration of ⁹⁰Sr in Heba Strong sample was 0.014 0.003 Bq/L, while concentration for Karadjordje was 0.016 0.005 Bq/L. 90Sr is found at a concentration far below that the one allowed by regulations for drinking water (4.6 Bg/L) [9]. Values for ⁹⁰Sr obtained in this paper are slightly higher than the values of 90Sr obtained in tap water in Switzerland (<0.005 Bq/L) [18]. In Pakistan concentration of ⁹⁰Sr in drinking water is 0.03 Bg/L [19].

The similar results for gross alpha and gross beta activities have been found by Joksić *et al.* [20] for mineral waters in Serbia that were analyzed during 2007, where Heba water had gross beta activity >1 Bq/L due to the high ⁴⁰K contribution of 1530 mBq/L. Table 3 compares our results for gross alpha and gross beta activities with the corresponding values in different countries. In tab. 3 the results for bottled mineral waters from Serbia [21] which are not carbonated, show lower gross alpha and gross beta activities than the carbonated bottled waters investigated in this paper.

Table 4 presents the activity concentrations of 226 Ra, 232 Th, and 40 K in waters of different origin. The concentrations of 226 Ra in mineral waters obtained in different countries are of wide range, from 0.14 mBq/L in Slovenia to 4000 mBq/L in Spain. On the other hand, 232 Th was detected in a small number of analyzed water and its concentration varied within the range from 7.1 mBq/L in Hong Kong to 190 mBq/L in Bangladesh. The content of 40 K was from 15.7 to 10064 mBq/L in Poland (tab. 4).

In order to evaluate the annual effective dose for age group >17 years, it was assumed that for 5 investigated waters (Knjaz Miloš, Minaqua, Mivela, Premia and Golijska Bistrica), where the gross alpha and gross beta activity does not exceed 0.5 and 1 Bq/L, respectively, the gross alpha and gross beta activities originates from ²²⁶Ra and ²²⁸Ra concentrations [4]. According to WHO guidelines, the daily drinking water consumption is in average about 2 liters. Data concerning the average daily bottled carbonated mineral

Origin	Gross alpha activity concentration [BqL ⁻¹]	Gross beta activity concentration [BgL ⁻¹] Refere	
Serbia (bottled mineral water)	0.001-0.013	0.041-0.173	[21]
Turkey (tap water)	0.0002-0.0150	0.0252-0.2644	[22]
Mexico (bottled mineral water)	< 0.011-0.415	<0.026-0.695	[7]
Spain (bottled mineral water)	0.03-0.86	0.04-2.28	[23]
Hungary (bottled mineral water)	0.008-1.15	0.035-0.97	[24]
Greece (bottled mineral water)	0.008-0.094	0.071-0.35	[25]
Poland (bottled mineral water)	0.002-0.592	0.053-1.784	[26]
Republic of Srpska (bottled mineral water)	<0.016-0.025	<0.02-0.7	[27]

Table 3. Gross alpha and gross beta activity concentrations comparison with literature values

Origin	Activity co	Reference		
Origin	²²⁶ Ra	²³² Th	⁴⁰ K	Reference
Poland	0.8-437		15.7-10064	[26]
Croatia	300-600			[28]
Slovenia	0.14-32			[29]
Serbia	10-530		200-1130	[30]
Greece	0.6-22.1			[25]
Hungary	4.3-910			[24]
Germany	0.8-350			[31]
Italy	0.2-1200			[31]
Spain	20-4000			[31]
France	7-700			[32]
USA	0.4-1.8			[32]
Turkey	11-36		80-169	[32]
Pakistan			31-140	[32]
Algeria	26	30	1000	[33]
Hong Kong		7.1	110	[33]
Bangladesh		190	4160	[33]

water consumption in the particular age group are not available. Therefore, it has been assumed here that the daily carbonated mineral water consumption for age group >17 is 200 mL per day, N in eq. (9). The annual effective dose rate to an individual, D, caused by absorption of natural radioactive elements in water can be calculated using the following equation [8]

$$D(Sv) N\eta W$$
 (9)

where W [BqL⁻¹] is the concentration of the radioisotope and η [SvBq⁻¹] – the age dependent dose conversion factor. The dose conversion factors are defined for age group >17 years) (tab. 5).

Table 5 contains the calculated annual effective dose equivalents coming from the 226 Ra and 228 Ra for age group >17 years. The annual effective dose values due to the ingestion of 226 Ra in the water varied from 1.68 to 9.40 Sv per year (for all investigated waters) and 15.97 to 46.39 Sv per year for 228 Ra. The annual effective doses are below the WHO recommended reference level of 0.1 mSv per year [8].

For water samples Heba Strong and Karadjordje, where the gross beta activity exceeds recommended level of 1 Bq/L, it was necessary to performed gamma spectroscopy and identified

radionuclides. Beside the gamma spectrometry, determination of 90Sr in these two samples was performed. Based on the obtained activity concentrations for ⁴⁰K and ⁹⁰Sr, annual effective dose equivalents coming from the ⁴⁰K and ⁹⁰Sr for age group >17 years, using appropriate dose conversion factors (tab. 5) was calculated. Since the ⁴⁰K contribution to gross beta activity is 89%, the residue belongs to other beta emitters, such as 90Sr, 3H, 228Ra etc. We did not determined ³H, so we assume that in addition to ⁴⁰K and ⁹⁰Sr, other beta activity originates from ²²⁸Ra. Calculated values for effective dose equivalents coming from the ⁴⁰K, ⁹⁰Sr, and ²²⁸Ra, for waters Heba Strong and Karadjordje are presented in tab. 5. Based on the calculated values for annual effective dose for these two samples), these values were below the WHO recommended reference level of 0.1 mSv per year [8].

CONCLUSIONS

Seven different brands of bottled carbonated mineral water on sale in Serbia have been examined for their radiochemical content. The gross alpha activ-

Brand	Radionuclide and dose conversion factor [SvBq ⁻¹] for annual water consumption of 73 L	Annual effective dose [µSv]
Knjaz Miloš		3.63
Minaqua	²²⁶ Ra (2.8 10 ⁻⁷)	3.19
Mivela		2.68
Premia		1.68
Heba Strong		9.40
Karadjordje		7.60
Golijska Bistrica		2.02
Knjaz Miloš		46.39
Minaqua		20.50
Mivela	²²⁶ Ra (6.9 10 ⁻⁷)	32.69
Premia		22.62
Golijska Bistrica		15.97
Heba strong		31.03*
Karadjordje		24.83*
Heba strong	4077 (5 0 10-9)	0.59
Karadjordje	40 K (5.0 10 ⁻⁹)	0.70
Heba strong	⁹⁰ Sr (2.8 10 ⁻⁸)	0.029
Karadjordje	Sr (2.8 10 ⁻¹)	0.033

Table 5. Dose conversion factor [34], water consumption for age class >17 and annual effective dose from 226 Ra, 228 Ra, 40 K, and 90 Sr

^{*}The annual effective dose originates from ²²⁸Ra after subtracting ⁴⁰K and ⁹⁰Sr from gross beta activity

ity in analyzed waters are below the level allowed by Serbian regulations. The gross beta activity for five samples are below the recommended reference level of 1 Bq/L, except for the Heba Strong and Karadjordje water, where gross beta activity exceeds the recommended limits. For this water it is necessary to perform gamma spectroscopy. In these two waters ⁴⁰K was detected in concentration of 1.63 0.33 Bq/L for Heba Strong and 1.93 0.41 Bq/L for Karadjordje water, while the concentrations of ²²⁶Ra, ²³²Th, ²³⁵U, and ²³⁸U were below the detection limits. ⁹⁰Sr was determined also for these waters, and specific activity was 0.014 0.003 Bq/L for Heba Strong and 0.016 0.005 Bq/L for Karadjordje. The concentration of ⁹⁰Sr is below the reference values for 90Sr in drinking water (4.6 Bq/L). Since the 40 K is included in total beta activity with 89%, we can conclude that the gross beta activity of 2.219 (Karadjordje) and 2.080 Bq/L (Heba Strong) originates mainly from ⁴⁰K and from ⁹⁰Sr.

Assuming that every adult drinks 200 mL of carbonated mineral water per day, the calculated annual effective dose caused by intake of the radium isotopes as well as 40 K and 90 Sr is lower than 0.1 mSv for all investigated waters.

This study has shown that the mineral waters that found on the territory of Serbia are in accordance with current international and domestic regulations and can be used as drinking water.

Monitoring of bottled waters radioactivity should be strongly recommended; special regulations should be enforced to protect the most exposed class of age.

ACKNOWLEDGMENT

The investigation was partially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under the following Projects III43009.

AUTHOR CONTRIBUTIONS

The manuscript was written by M. Janković. Experiments were carried out by M. Janković, N. Sarap, and D. Todorović, and results were analyzed and discussed by all authors. Tables and figures were prepared by M. Janković.

REFERENCES

- Petrović, T., *et al.*, Hydrogeological Conditions for the Forming and Quality of Mineral Waters in Serbia, *Journal of Geochemical Exploration*, 107 (2010), 3, pp. 373-381
- [2] ***, UNSCEAR Sources and Effects of Ionising Radiation, Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, United Nations, New York, USA, 2000
- [3] Obradović-Arsić, D. R., et al., Natural Ionizing Radiation and Human Health in Serbia, Nucl Technol Radiat, 25 (2010), 3, pp. 192-197
- [4] Malanca, A., Repetti, M., Macedo, H. R., Gross Alpha and Beta Activities in Surface and Ground Water of Rio Grando do Norte, Brazil, *Appl. Radiat. Isot.*, 49 (1998), 7, pp. 893-898
- (1998), 7, pp. 893-898
 [5] Duenas, C., *et al.*, ²²⁶Ra and ²²²Rn Concentrations and Doses in Bottled Waters in Spain, *J. Environ. Radioact.*, *45* (1999), 3, pp. 283-290

- [6] Otwoma, D., Mustapha, A. O., Measurements of ²²²Rn Concentration in Kenyan Groundwater, *Health. Phys.*, 74 (1998), 1, pp. 91-95
- [7] Rangel Davila, J. I., et al., Radioactivity in Bottled Waters Sold in Mexico, Applied Radiation and Isotopes, 56 (2002), 6, pp. 931-936
- [8] ***, Guidelines for Drinking Water Quality: Radiological Aspects, 3rd ed., World Health Organization 1, 2004
- [9] ***, Regulation on Limits of Radionuclide Content in Drinking Water, Foodstuffs, Feeding Stuffs, Drugs, Items of General Use, Building Materials and Other Goods to be Placed on the Market, Official Gazette of the Republic of Serbia, 86/11, 2011
- the Republic of Serbia, 86/11, 2011
 [10] Zhu, S., *et al.*, Interference of ⁹¹Y with the Rapid Determination of ⁹⁰Sr Originating from the Chernobyl Fallout Debris, *Radiochima Acta*, 51 (1990), 6, pp. 195-198
- [11] Petrović, Dj., *et al.*, Electrochemical Separation of 90-ytrium in the Electrochemical ⁹⁰Sr/⁹⁰Y Generator and Its Use for Radiolabelling of Dota-Conjugated Somatostatin Analog [dota[°], Tyr³] Octreotate, *Nucl Technol Radiat*, 27 (2012), 3, pp. 260-268
- [12] Petrow, H. G., Rapid Determination of ⁹⁰Sr in Bone Ash Via Solvent Extraction of ⁹⁰Y, *Analytical Chemistry*, 37 (1965), 4, pp. 584-586
- [13] Randolph, R. B., Determination of ⁹⁰Sr and ⁸⁹Sr by Cerenkov and Liquid Scintillation Counting, *Applied Radiation and Isotopes*, 26 (1971), 1, pp. 9-16
- [14] Juznic, K., Fedsina, S., Radiochemical Determination of ⁹⁰Sr and ⁸⁹Sr in Soil, *Fresenius' Journal of Analytical Chemistry*, 323 (1986), 1, pp. 61-63
- [15] ***, EPA Prescribed Procedures for Measurement of Radioactivity in Drinking Water. EPA-600/4-80-032. Method 900.0., 1980
- [16] Brnović, R., Strontium 90 in the Human Environment, M. Sc. thesis, Faculty of Science, Belgrade, 1972
- [17] ***, Regulation on Quality and Other Requirements for Natural Mineral Water, Spring Water and Bottled Drinking Water, Official Gazette of Serbia and Montenegro, 53/05, 2005
- [18] Froidevaux, P., Friedrich-Benet, K., Valley, J. F., Simple Determination of ⁹⁰Sr in Water in Environmental Radioactivity Survey, *Journal of Radioanalytical and Nuclear Chemistry*, *261* (2004), 2, pp. 295-299
 [19] Jabbar, T., *et al.*, Determination of ⁹⁰Sr in Environ-
- [19] Jabbar, T., et al., Determination of ⁹⁰Sr in Environment of District Swat, Pakistan, Journal of Radioanalytical and Nuclear Chemistry, 279 (2009), 2, pp. 377-384
- [20] Joksić, J., Radenković, M., Miljanić, Š., Natural Radioactivity of Some Spring and Bottled Mineral Waters from Several Central Balkan Sites, as a Way of their Characterization, *J. Serb. Chem. Soc.*, 72 (2007), 6, pp. 621-628
- [21] Janković, M. M., et al., Natural Radionuclides in Drinking Waters in Serbia, Applied Radiation and Isotopes, 70 (2012), 12, pp. 2703-2710
- [22] Damla, N., et al., Gross α and β Activities in Tap Waters in Eastern Black Sea Region of Turkey, *Chemosphere*, 62 (2006), 6, pp. 957-960
- [23] Palomo, M., et al., Measurement of Radioactivity in Bottled Drinking Water in Spain, *Applied Radiation* and Isotopes, 65 (2007), 10, pp. 1165-1172
 [24] Kovacs, T., et al., ²³⁸U, ²²⁶Ra, ²¹⁰Po Concentrations of
- [24] Kovacs, T., et al., ²³⁸U, ²²⁶Ra, ²¹⁰Po Concentrations of Bottled Mineral Waters in Hungary and their Committed Effective Dose, *Radiation Protection Dosime*try, 108 (2004), 2, pp. 175-181
- [25] Karamanis, D., Stamoulis, K., Ioannides, K. G., Natural Radionuclides and Heavy Metals in Bottled Water in Greece, *Desalination*, 213 (2007), 1-3, pp. 90-97

- [26] Dinh Chau, N., Michalec, B., Natural Radioactivity in Bottled Natural Spring, Mineral and Therapeutic Waters in Poland, *Journal of Radioanalytical and Nuclear Chemistry*, 279 (2009), 1, pp. 121-129
- [27] Todorović, D., Janković, M. M., Cvrkalj, D., Measurement of Radioactivity in the Mineral Waters of the Republic of Srpska, Second International Congress on "Environment, Health, Work, Sport", Banja Luka, Book of Abstracts, June 25-26, Banja Luka, Republic of Srpska, 2008, pp. 341-342
- [28] Bituh, T., et al., Natural Radio-Activity of ²²⁶Ra and ²²⁸Ra in Thermal and Mineral Waters in Croatia, *Radiat. Prot. Dosim., 133* (2009), 2, pp. 119-123
- [29] Benedik, L., Jeran, Z., Radiological of Natural and Mineral Drinking Waters in Slovenia, *Radiat. Prot. Dosim. 151* (2012), 2, pp. 306-313
- [30] Tanasković, I., Erenić-Savković, M., Javorina, L. J., Radioactivity of Spa Water in Serbia, *Proceedings*, 26 Symposium of Society for Radiation Protection of Serbia and Montenegro, October 12-14, Tara, Belgrade, Serbia, 2011, pp. 137-140
- Beyermann, M., *et al.*, Occurrence of Natural Radioactivity in Public Water Supplies in Germany: ²³⁸U, ²³⁴U, ²³⁵U, ²²⁸Ra, ²²⁶Ra, ²²²Rn, ²¹⁰Pb, ²¹⁰Po, and Gross Activity Concentrations, *Radiat. Prot. Dosim.*, *141* (2010), 1, pp. 72-81
- [32] Ajayi, O. S., Owolabi, T. P., Determination of Natural Radioactivity in Drinking Water in Private Dug Wells in Akure, *Southwestern Nigeria, Radiat. Prot. Dosim.*, 128 (2008), 4, pp. 477-484
- [33] Amrani, D., Natural Radioactivity in Algerian Bottled Mineral Waters, J. Radioanal. Nucl. Chem., 252 (2002), 3, pp. 597-600
- [34] ***, International Basic Safety Standards no. 115, IAEA, Vienna, 1995

Received on February 16, 2013 Accepted on September 16, 2013

Марија М. ЈАНКОВИЋ, Наташа Б. САРАП, Драгана Ј. ТОДОРОВИЋ, Јасминка Д. ЈОКСИЋ

ПРИРОДНИ И ПРОИЗВЕДЕНИ (⁹⁰Sr) РАДИОНУКЛИДИ У ГАЗИРАНИМ МИНЕРАЛНИМ ВОДАМА КОЈЕ СЕ КОРИСТЕ У СРБИЈИ

У раду су приказани резултати испитивања садржаја природних и произведених радионуклида у газираним минералним водама које се производе и флаширају у Србији. Укупна алфа активност је унутар дозвољених вредности, док укупна бета активност превазилази дозвољене вредности од 1 Bq/L за узорке Хеба Стронг и Карађорђе. За ова два узорка активност радионуклида одређена је спектрометријом гама емитера, и нађено је да укупна бета активност у великој мери потиче од ⁴⁰К. Такође, у узорцима Хеба Стронг и Карађорђе одређен је садржај произведеног радионуклида ⁹⁰Sr. На основу свих добијених резултата израчуната је годишња ефективна доза, за старосну групу преко 17 година, услед ингестије испитиваних вода. Добијене вредности су ниже од 0.1 mSv, максимално дозвољене дозе за становништво.

Кључне речи: газирана минерална вода, радиоакшивносш, ⁹⁰Sr, годишња ефекшивна доза