Vol.
XXV, No. 2, Pp. 69-156
September 2010
UDC 621.039+614.876:504.06
ISSN 1451-3994
Back to Contents
|
Pages: 120-125
Authors: Nada S. Marjanović, Miloš Lj. Vujisić, Koviljka Dj. Stanković, Dejan Despotović, and Predrag V. Osmokrović
Abstract
The effects of exposing titanium dioxide memristors to ion beams are investigated through Monte Carlo simulation of particle transport. A model assuming ohmic electronic conduction and linear ionic drift in the memristor is utilized. The memristor is composed of a double-layer titanium dioxide thin film between two platinum electrodes. Obtained results suggest that a significant generation of oxygen ion/oxygen vacancy pairs in the oxide is to be expected along ion tracks. These can influence the device's operation by lowering the resistance of the stoichiometric oxide region and the mobility of the vacancies. Changes induced by ion irradiation affect the current-voltage characteristic and state retention ability of the memristor. If the displaced oxygen ions reach the platinum electrodes, they can form the O 2 gas and cause a permanent disruption of memristor functionality.
Key words:
memristor, titanium dioxide, ion beam, Monte Carlo simulation
FULL PAPER IN PDF FORMAT (1.02 MB)
|