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APPROXIMATIONS OF CHANDRASEKHAR’S H FUNCTION
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Applying the mean value theorem for definite integrals in the non-linear integral equa-
tion for Chandrasekhar’s H function describing conservative isotropic scattering, we
have derived a new, simple analytic approximation for it, with a maximal relative error
below 2.5%. With this new function as a starting-point, after a single iteration in the
corresponding integral equation, we have obtained a new, highly accurate analytic ap-
proximation for the H function. As its maximal relative error is below 0.07%, it signif-
icantly surpasses the accuracy of other analytic approximations.
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INTRODUCTION

H functions were first introduced by Ambart-
sumian [1] and later developed extensively by
Chandrasekhar whose results were collected and pre-
sented in detail in his classical monograph [2]. These
functions play a major role in the theory of radiative
transfer in planetary and stellar atmospheres. Also,
they have a key role in a number of problems in single
speed, one-dimensional neutron transport theory with
isotropic scattering as described in the monograph by
Case and Zweifel [3]. Relatively recently, we have ap-
plied them to an entirely different field, in a detailed
description of X-ray transfer relevant to medical diag-
nostics [4-5]. In all the mentioned applications, their
accurate numerical values are needed.

First tabulations of H functions were made by
Chandrasekhar and Breen [6] and later supplemented
by similar calculations by Harris [7]. Valuable,
though, these tabulations have been, there was still a
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need for more detailed numerical data about H func-
tions, especially for parameters close to unity, absent
from these calculations. In the paper by Hiroi [8], the
values of the H function for a much larger number of
single particle albedo parameters and with a much
higher accuracy were provided.

However, the various applications of these func-
tions require values for any value of the single scatter
albedo. Such requirements can be met by reliable and
accurate analytic approximations for quick calcula-
tions. Useful approximations of the H function based
on the Gauss-Legendre quadrature can be found in
Chandrasekhar’s book. More recent results for the ap-
proximate H function came out as a by-product from a
variational treatment of the half-space problem by
Pomraning [9]. Simovi¢ and Vukani¢ [10] have de-
rived three approximate analytic expressions for the H
function by using the ordinary and flux decomposition
DPN method. The accuracy of the obtained approxi-
mations of the H function is examined in some detail
and compared with analogous approximate results of
Chandrasekhar, determined from table IX of ref. [2],
as well as with Pomraning’s approximations. Simovié
and Vukani¢ have found that their formulas are more
accurate than Chandrasekhar’s results for the same or-
der of approximation. Their formulas are of similar ac-
curacy as Pomraning’s expressions, but simpler and
more tractable. By using the approximative H function
obtained from the flux decomposition DPO techique,
the same authors treated analytically low-energy light
ion reflection from solids [10-11]. This approach ap-
pears convenient for solving this energy-dependent
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albedo problem. Simovi¢ and Markovi¢ [12] have pre-
sented a novel approximative analytic solution for the
H function obtained by the decomposition of the an-
gular flux density of particles combined with the sec-
ond modified DPN method.

Two approximations of Chandrasekhar’s H func-
tion for isotropic scattering, one of which is very simple
in form, the other extremely accurate, are presented in
this work. Before describing them in detail in the next
section, we shall first re-derive Chandrasekhar’s inte-
gral equation in a simple and transparent way. In our
opinion, this derivation is of some interest per se, al-
though such derivations, in various forms, already exist
in literature [2, 13, 14]. It is far from easy to follow the
derivation of this formula, especially in pioneering
works such as those by Kouganoff [14] or
Chandrasekhar [2] and difficult to see clearly the origin
of corresponding terms.

GENERAL CONSIDERATIONS

The H function describes the intensity of radia-
tion scattered by a semi-infinite medium of independ-
ent scatterers. More precisely, when isotropic scatter-
ing is concerned, the angular distribution of particles
backscattered from half space is given by an exact so-
lution [2]

R(ﬂo:ﬂ):%ﬂ “+ L H ) () (1)
0

Here, u,and u are the directional cosines of the
incident and reflected particles with respect to the tar-
get surface normal and R(u, 1t)d u gives the probabil-
ity for a projectile to be reflected with directional co-
sines between u and p + du, irrespective of the
azimuthal angle. The scattering medium is character-
ized solely through the parameter @ which represents
the single scatter albedo. This parameter is given by

= _ %% )
oR +0,
where o and o, are the total cross-sections for scatter-
ing and absorption, respectively. Furthermore, H (1, ®)
is the H function, which depends on the variable 1 and
parameter o [2].

Applying the first principle, we shall now derive
the integral equation which describes the reflection of
particles from half space assuming isotropic scattering
and no energy loss. First, we extract a differentially thin
layer Az just below the target surface. The layer is so
thin that a projectile may undergo at most one collision
within it. Then we have the following five events,
shown in fig. 1, which contribute to the angular distri-
bution of reflected particles R (1, 1), whose probabili-
ties are linear functions in Az. All other cases are O (Az?)

Let us characterize physically these five cases

(@) - (e).

AN

Figure 1. Possible events in the thin layer during the re-
flection of the projectile whose probabilities are linear
functions of Az. Crosses denote the scattering in the layer
itself, while the broken line represents backscattering in
the infinite medium

(a) A projectile passes the thin layer without
scattering, is then reflected from the remaining half
space and arrives back to the target surface, again
without scattering in the thin layer.

(b) A backscattering event happens solely in the
thin layer.

(c) The projectile is scattered inward in the thin
layer and then reflected from the half space, with no
scattering when leaving the thin layer.

(d) Entering, a projectile passes Az without scat-
tering, is then reflected from the half'space and, finally,
undergoes scattering in the thin layer, just before leav-
ing the target surface.

(e) Entering, a projectile passes Az without scat-
tering, is then reflected from the half space and under-
goes scattering in the thin layer, but this time inward, is
again reflected and leaves the target without further
scattering.

Writing the probabilities for elementary events
from which these cases are composed and multiplying
them, in the same order in which these elementary
events occur, as depicted in fig. 1, we obtain the proba-
bilities for our five cases, as follows:

(l—ﬁozncn )R(uo ,m(l—fnoT ] .
(a)
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Hy H
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where o =03 +0,

Az O Az O
2R =22 R

(b)
Mo 41 Ho

Factor 4n in denominator stems from the as-
sumption that the scattering is isotropic, while factor
2n is the result of integration over the azimuthal angle.

Az oR , ,
(©) —n—— | R(u',p)dp
o 2 '[
The integration extends over all inward direc-

tions .

" AZ O- "
(d) [ Rug, e )71171‘«1;1

The integration extends over all outward direc-
tions u".
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The angular distribution of reflected projectiles
may be expressed, up to the terms linear in Az, as the
sum of these five probabilities. In such an expression,
the term R (1, 1) appears on both sides of the equal-
ity and may be cancelled. By canceling the common
linear factor Azn further, in respect to all remaining
terms, and by neglecting the higher order terms, after
simple rearrangements and factorization of the corre-
sponding sum, we can form the following integral
equation for R (g, i)

1 14 r
R(ugu )=~ 0 —"— [+ [R(u', p)d ']
2 pot+u
)7

Writing R (1, 1) in the form given in eq. (1), one
obtains the following integral equation for H(u,m)

1 ’
0] S H(w, o
o) =142 i (o) dw T2 (4)
2 0 M+

which is the starting point for all studies of the H func-
tion.

NEW ANALYTIC APPROXIMATIONS OF
THE H FUNCTION

The integral eq. (4) which satisfies the H func-
tion can be written in the form of

1 _,.© jH(u’,w)du, )

H(p,) 20

Applying the mean value theorem for definite
integrals to this equation, instead of the function 1/(u+
+ 1) under the integral, we can write 1/ [&(w, pt)+ 1] in
front of it, so that we have

L 19 [Hleds ©)
H(u,0) 2 So,)+py

The new integral in this equation represents the
zero order moment /4, of Chandrasekhar’s H function
for which Chandrasekhar [2] found the exact value to be

1
(@) =] Hw o)’ =2(1=V1=0) (1)
0

Now, inserting this expression in eq. (6), we can
represent H(u,w) in the form of

E(o,p)+p ()

H(u,w)=
)= oo

The simplicity of eq. (8) is somewhat deceiving,
because the mean value theorem for the integrals is not
constructive; it only guaranties the existence of £(w, p),
but does not provide the means to evaluate it.

However, this representation has some straightfor-
ward advantages. For example, if one takes the simplest
approximation for &, namely & = 1/2, which means fixing
' in the denominator of the integrand in eq. (5) to the
middle value of the interval of integration over u', one

obtains 1421

1+ 2V1-ou

This expression is a well known approximation of
Hapke [15] which gives a good approximation for multi-
ple scattering phenomena, with the exception of the case
when @ is close to unity.

The unknown function &(w, 1) can be found only
approximately. Another advantage of our approach is
that one can find an analytic approximation for & without
the iteration procedure. Taking into account the behavior
of'the H function as a function of @, we have, by trial and
error, found that a highly suitable approximation is of the
form

H(p,0)= )

a70+b,u (10)
I+a,vVl-w

E(0, 1) = a(w)+ bu =

where the unknown constants ag, a;, and b will be de-
termined by matching the zero order moment of the H
function as accurately as possible. Inserting this ex-
pression in eq. (8), we obtain the approximate expres-
sion for the H function in the form of

a(w)+ (b+1Du
a(@)+ (b+~N1-w)u

Hyyp (1,0) = (11)

With this function, the expression for the zero
order moment is given by
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Making a dense, three-dimensional grid for pa-
rameters a,, b, and a; we have found that their best val-
ues are a = 0.431, b =0.105, and a;, = 0.316. In this
case, the values of the zero order moment obtained
from eq. (12) have the accuracy of 0.1% for the whole
range of . With this approximation, the relative error
of the H function is within 2.5%. In this manner, we
have managed to obtain an analytical approximation
of the H function, very simple in form and with a fairly
high accuracy.

At the cost of the simplicity of the structure, the
accuracy of the approximation can be enormously im-
proved if we insert solution (12) into the integral eq.
(6) and make a first order analytic iteration. This pro-
cedure gives the improved approximate formula

1 W 1

Happ(:usw): E[u61(6())—(174-\/1—60),[,1.

,{a(a))—(l—qll—a))ln 1+b+«/l—a) N
b++l-w a(w)

+[a(a))—(b+1),u]ln(1+:J} (13)

The estimation of its accuracy is given in the
next section.

DISCUSSION

We have compared our newly obtained results
with the best known previously published results.
Hapke [15] approximated the H function as an analyti-
cal form

1+2u
1+ 2V1-ou

A while later, Hapke [16] proposed an even
better approximation

H(u,a)):{l—(l—M)[m +(1—r§—r0uj.

-1
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H(p,0)= (14)

u - I+Vl-w

The errors of our approximate functions were
found to be, in comparison to Hiroi’s [8] numerical re-

sults which have an accuracy of at least five decimal
points, even more accurate than Chandrasekhar’s and
our own, highly accurate (up to ten decimal points) nu-
merical results, not published yet. The comparison of
the accuracy of our analytical approximations with the
accuracy of the analytical approximations quoted by
Hiroi, shows that our respective approximations are
more accurate than all others. Figure 2 shows the rela-
tive error 6 H

:H(uaw)_Helipp (lu’a))
H(p,0)

SH (16)
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Figure 2. The relative error H of the H function, calcu-
lated from our first approximate formula (11), shown as
a function of the parameter o for the three characteristic
values of the variable 1

where for H (1, @), numerical values from the tables
are used, while A ;pp (u,®)1is calculated from our ap-
proximate formula (11). The relative error is given as a
function of single scatter albedo @, for the three cho-
sen u values i = 0.5, 0.75, and 1. The relative error is
within 2.5% for all u values, as shown in fig. 2. In this
way, we have obtained the analytical approximation of
a very simple form which has a fairly high accuracy.
Figure 3 shows the relative error of our improved ap-
proximate formula (13) as a function of the single scat-
ter albedo w, for the three values of the directional co-
sine 4 =0.5,0.75, and 1. The relative error is within
0.07% and decreases as u increases. Figures 4 and 5
show the relative error of Hapke’s approximations
(14) and (15). The first approximation is withina 4.1%
margin. Hapke’s improved approximation gives re-
sults within a relative error of 0.8%.

CONCLUSION

It is evident that our first approximation is more
accurate than the first approximation of Hapke. Our
improved approximation also shows better agreement
with the exact H function than that of Hapke’s im-
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Figure 3. The relative error H of the H function, calcu-
lated from our impoved aproximative formula (13),
shown as a function of the parameter ® for the three
characteristic values of the variable u
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Figure 4. The relative error 0 H of the H function, calcu-
lated from Hapke's first approximative formula (14),
shown as a function of the parameter @ for the three
characteristic values of the variable u

0.008 T T T T T
0.007
0.0086 -
0.005
0.004
0.003 y

0.002

0.001

=0.001

~0.00257 0.2 0.3 04 05 0.6

Figure 5. The relative error 6 H of the H function, calcu-
lated from Hapke's impoved approximative formula
(15), shown as a function of the parameter o for the three
characteristic values of the variable 1

proved formula. Note that we have chosen parameters
ay, b, and a; so as to minimize the supremum of rela-
tive errors and not their mean value. However, in spite
of the achieved high accuracy, it seems that, for close
to unity, further improvement of analytical approxi-
mation is called for.
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Josan BYKAHW, [dyman APCEHOBUh, dparomup M. IABUTOBUh

JEJAH HOB HAYMH 3A JOBUMJABE AHA/INTUYKUX
AITIPOKCUMAILIMJA YAHIPACEKAPOBE Xa-®YHKIIMNJE

[Mpumewyjyhu y HemHeapHOj MHTErpaaHoj jeqHaunHu 3a YanapacekapoBy Xa-(yHKIH]jY, Koja
OIUCYyje KOH3epBAaTUBHO M30TPOIHO pacejame, TEOPEMY O CPefmh0j BpefHOCTU oApebeHux mHrerpana,
W3BENIM CMO HOBY j€JHOCTAaBHY aHAJIWTHYKY alpoKcHMalujy 3a Xa-QpyHKIH]y, ydja je MaKCHMayTHa
penatuBHa Tpemika ucnof 2.5%. [lomazehm ox oBe HOBe (pyHKIMje Kao MOYETHE alMpOKCHMAIHje Y
ofroBapajyhoj MHTErpalHOj jeJHAYMHH, MOCIE caMoO jefHe WTepaluje, Koja MOXe [a ce WU3BPIIU
AQHAIUTUYKHY, JOOMIIN CMO HOBY BpJIO TauHy aHAJIUTUUKY alpoKcuMaIujy 3a Xa-pyHkuujy. Makcumanna
penaTuBHaA TpeliKka Hauie apyre anpokcumanyje je ucnoj 0.07%, Tako ma oBa ampokcuMmanuja gaaeko
npeBa3uia3u TAYHOCT APYTUX aHAJTUTUIKUX allpOKCUMallija MO3HATUX Y INTepaTypu.

Kmwyune peuu: Xa-¢pynkyuja, anaauiiuuxka aipokcumayuja, U3oiipoilHo pacejare, MOHOeHepZeiicKuU
uipancuopiu




