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AXIAL BETATRON
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In an isochronous relativistic cyclotron, axial defocusing of a beam caused by the radial
growth of the isochronous magnetic field is compensated by the azimuthal field gradi-
ent introduced by sectors. The focusing capabilities of sectors set the maximum ion en-
ergy obtainable from the machine. Usually, the focusing limit of a machine is deter-
mined by using the criterion for axial beam instability evolving from the equations of
betatron oscillations. The obtained value of the focusing limit is approximate because
the equations of betatron oscillations it originates from are approximate as well. The
accurate value of the focusing limit is obtained by simulating accelerated beam dynam-
ics in the extraction region. It is shown that the focusing limit of a cyclotron resulting
from the two methods could differ for more than 9%. The suggested third method for
focusing limit computation relies on the beam dynamics simulation along the critical
equilibrium orbit rather than the acceleration orbit and thus it is less time consuming

although equally accurate.
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INTRODUCTION

In an isochronous cyclotron, gyration fre-
quency of an ion is constant during acceleration.
The consequential growth of the relativistic ion
mass during acceleration is compensated by the ap-
propriate radial increase of the magnetic field. Such
magnetic field is referred to as the isochronous field.
However, the positive radial gradient of the mag-
netic field causes axial defocusing of the beam. The
effect is stronger for larger field gradients at large ra-
dii, i. e. for higher beam energies. To solve the prob-
lem, the azimuthal gradient of the magnetic field is
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introduced by using additional magnetic structure
elements — the sectors [1].

Figure 1 shows the detail of the magnet of the
VINCY Cyclotron, the main part of the TESLA Ac-
celerator Installation, which is under construction in
the Laboratory of Physics of the VINCA Institute of
Nuclear Sciences. The diameter of the magnet pole is
200 cm. The machine has four sectors per magnet
pole and two dees, i. e., four acceleration gaps. The az-
imuthal width of each sector is 42° and its spiral angle
is zero. The width of each acceleration gap will be
taken to be 1 cm. The extraction radius of the machine
is 84 cm [2]. The bending and the focusing constants
of the machine are K, = 135 MeV and Ky = 69 MeV,
respectively. Thus the limiting value of the ion specific
charge nn = 0.51 separates the ions whose acceleration
is limited by bending characteristics from those whose
extraction energy is restricted by focusing capabilities
of the machine. The maximal obtainable energy of the
ions whose specific charge is larger than the limiting
value is set by the focusing properties. Practically, this
is the H™ ion beam only. The maximal obtainable en-
ergy of all the other ion beams is determined by the
bending capabilities of the machine. The focusing
properties of the three model magnets of the machine
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Figure 1. Detail of VINCY cyclotron magnet

The two axially opposite sectors and their surroundings in
the magnetic structure: 1 — sectors, 2 — space for the trim
coils, 3—median pole plates, 4 — main coils, 5 - vertical gap
between sectors i. e. magnetic gap g,

are investigated. The models differ only by the size of
the magnetic gap g,,,, and the three values used are 31,
36.4, and 47.5 mm.

An isochronized magnetic field that enables
isochronous regime of acceleration consists of the
azimuthally averaged part, the isochronous field,
and the azimuthally varying part introduced by sec-
tors. The isochronous magnetic field is computed
using Gordon’s procedure [3]. The azimuthally
varying part of the field is obtained and the flutter
term required by Gordon’s procedure is calculated
from the simulated response of the model magnet.
The three model magnets were created and their
simulated responses obtained using MERMAID —a
finite element software package for magnetic and
electric field simulations [4-7]. A number of
isochronized magnetic fields defined by different
values of the ion gyration frequency f, was prepared
for each of the three model magnets. The test ion is
an H™ ion since it will be the one to be accelerated in
the VINCY Cyclotron to the highest energy per nu-
cleon.

Two of the three approaches to the focusing
limit computation that will be presented rely on the
concept of an equilibrium orbit. The azimuthal
symmetry of the magnetic field induced by sectors is
such that particles with fixed energy move on a
closed trajectory called the equilibrium orbit. In a
given magnetic field there is one to one correspon-
dence between the test ion energy E, the equilib-
rium orbit, and the mean radius of the equilibrium
orbit Ry, see fig. 2. The ion energy corresponding
to the equilibrium orbit whose R, is equal to the ex-
traction radius of 84 cm is called the extraction en-

ergy.

Figure 2. Equilibrium orbit

A part of the lower magnet pole, the lower sectors and an
equilibrium orbit in the VINCY Cyclotron are shown. In a
given magnetic field characterized by the ion gyration fre-
quency f, an equilibrium orbit of a test ion is defined by the
ion energy E, or the mean orbit radius R,,. The azimuthal
half-axis @ = 0° is defined byx > 0 andy = 0

AXTAL BETATRON INSTABILITY
CRITERION

A test particle displaced from the equilibrium
orbitoscillates around it in the radial as well as in the
axial direction. These are betatron oscillations and
are characterized by the radial and axial betatron fre-
quency [8]. The focusing limit of a cyclotron results
from the condition for axial beam instability which
reads v,> = 0, where v, is the axial betatron fre-
quency. Commonly, v, is calculated from the follow-
ing approximate expression

2 N?

F(1+2tan” &)
N?-1

where k = (r/(B)) (d(B)/dr)is the radial field index,
r the radius, (B) the azimuthally averaged magnetic
field, N the number of sectors per pole, & the sector
spiral angle, F = ((B?) — (B)?)/(B?) the flutter, and
(B?) the azimuthally averaged square of the mag-
netic field.

Figure 3 shows the radial dependence of v, in
the four test magnetic fields of the model magnet
with g;,, = 36.4 mm. As expected, the radial position
of the axial beam instability moves towards the cyclo-
tron centre with the increase of the gyration fre-
quency and consequently the ion extraction energy.
The minimal radius at which the instability may oc-
cur is the beam extraction radius. Thus the axial
beam instability occurring at the radius of 84 cm de-
fines the gyration frequency and magnetic field of the
acceleration regime that corresponds to the focusing
limit of the machine. We call this field the limiting
magnetic field. In fig. 4, the radial dependence of the
squared axial betatron frequency in the limiting mag-
netic field is given for each of the three model mag-
nets. The focusing limit of the magnet is the energy
corresponding to the equilibrium orbit with the
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Figure 3. Radial dependence of v,? in model magnet
with g, = 36.4 mm

The squared axial betatron frequency is shown for the
isochronized magnetic fields corresponding to the four
values of the ion gyration frequency f = 20.4, 20.7, 20.9,
and 21.35 MHz. The radial position of the axial betatron
instability, v,? = 0, decreases with the increase of the ion
gyration frequency. It reaches the minimum allowed
value of 84 cm, i. e., the extraction radius of the machine,
for the ion gyration frequency f = 21.35 MHz. The
isochronized magnetic field corresponding to the limiting
ion gyration frequency is called the limiting magnetic
field

mean radius of 84 cm in the limiting magnetic field.
The obtained values of the focusing limits E,;, as
well as the ion gyration frequencies corresponding to
the limiting magnetic fields f,;, for the three cyclo-
tron magnet models are given in tab. 1.

Table 1. Focusing limits

8m Jabi Eqbi Jod Epd | AE/Epd
[mm] | [MHz] | [MeV] | [MHz] | [MeV] | [%]

31 225 84.8 | 2165 | 77.8 9.0
364 | 2135 | 75.3 | 205 68.9 9.3
475 | 199 643 | 19.3 60.0 7.2

The focusing limits E, and the gyration frequencies f, ob-
tained with the axial betatron instability (abi) criterion
and beam dynamics (bd) method are given for the three
model magnets characterized by the magnetic gap size g,,.
The focusing limits obtained using the approximate (abi)
and accurate (bd) approach could differ for more than
9%

BEAM DYNAMICS METHOD

The defocusing forces are the strongest at
large radii where the radial gradient of the magnetic
tield is the largest. Thus, the beam dynamics simula-
tion area is chosen to be the space limited by the two
equilibrium orbits with the mean radii of approxi-
mately 82 and 84 cm. The initial radial and azi-
muthal coordinates of the central ion in a beam are
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Figure 4. v,? in limiting magnetic fields
The radial dependence of the squared axial betatron fre-
quency is shown in the limiting isochronized magnetic fields
of the three cyclotron magnet models. The ion gyration fre-
quency of the limiting magnetic fields is f,,; = 22.5, 21.35,
and 19.9 MHz for the cyclotron magnet models with g,, =
= 31, 36.4, and 47.5 mm, respectively

85 cm and 0°, respectively. At the initial point, a
beam is represented by a number of ions distributed
in the axial phase space. The half-axes of the initial
beam emittance are 5 mm and 1 mrad. The acceler-
ating electric field is assumed to be constant within
the acceleration gap. The amplitude of the dee volt-
age is 70 kV. The beam simulation ends when the
central ion reaches the radius of 87 cm. The output
of each run is the maximum value of the axial
half-envelope of the beam that was achieved during
the simulation. The simulations are performed with
the software package VINDY [9].

The sample beam dynamics simulation
shown in fig. 5 is performed in the magnetic field
corresponding to the cyclotron model with the ax-
ial gap of g,, = 36.4 mm and ion gyration fre-
quency of f = 20.9 MHz. The maximal axial beam
envelope is 26 mm which is approximately equal to
0.7 gm and is 2.6 times larger than the initial verti-
cal beam size. The growth of the beam envelope in-
dicates that defocusing forces have overpowered
the focusing forces. On the other hand, the value of
v, between radii 82 and 84 cm is in the range be-
tween 0.13 and 0.18. These values are well above
zero, which corresponds to the beam instability,
and therefore do not point toward any focusing
problems.

Simulations similar to the one depicted in fig. 5
are performed for a number of test magnetic fields for
each of the three model magnets. The properties of an
equilibrium orbit are used to describe a magnetic field
by the ion extraction energy it provides. The
defocusing of the beam is measured by the maximal
half-envelope achieved along the simulated path. The
dependences of the half-envelope’s maximum on the
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Figure 5. Axial envelope of test beam

A beam dynamics is simulated within the 2 cm wide area
limited by the two equilibrium orbits. The mean radius of
the outer limiting orbit is equal to the extraction radius so
the simulation area is placed at the largest possible radii.
Thus, in the chosen area, the beam experiences the strongest
defocusing during the course of acceleration. The example
corresponds to the magnet model with g,, = 36.4 mm and
the magnetic field with f = 20.9 MHz. The defocusing
caused by the positive radial gradient of the magnetic field
emerges as the growth of the envelope in the time interval be-
tween 600 and 1000 ns from the beginning of the simulation
while the focusing caused by sectors appears in the fine
structure of the envelope as small dips. In general, the global
maximum of the beam envelope indicates that the
defocusing forces are stronger than the focusing ones. The
value of the maximal half-envelope achieved along the sim-
ulated path is therefore established as a measure of the
beam defocusing

extraction energy given in fig. 6 for each of the three
model magnets are the results of the beam dynamics
study of the focusing properties of the model mag-
nets. The maximum of the beam envelope increases
with the extraction energy increase and overgrows the
size of the axial magnet gap well before the extraction
energy predicted by the axial betatron instability crite-
rion. Theoretically, any value of the maximal half-en-
velope of the beam that is larger than the initial
half-size of the beam enlarged by the simulation error
indicates the existence of the defocusing eftect. The
criterion used is less rigorous; namely, the focusing
limit is taken to be the ion extraction energy corre-
sponding to the value of the maximum envelope not
more than 35% larger than the initial beam size which
is safely above the numerical error. The focusing limits
E\4, as well as the ion gyration frequencies of the limit-
ing magnetic fields fi4, are listed in tab. 1.

EQUILIBRIUM ORBIT METHOD

It was shown that the beam dynamics simula-
tions performed along the acceleration orbit in the

50 —F 71— T
E —— gy =47.5mm
E 45 T
% —@®— 9,,=36.4mm
40 B
5- —h— gn=31m
g 35 4
e
= 30 b
T
25 |- -
25 b
15 .
10 .
5 .
ok .
_5 1 1 1 1 1 1
55 60 65 70 75 80 85

E[MeV]

Figure 6. Maximum axial half-envelope vs. extraction
energy

Each point in the graph represents a beam dynamics simu-
lation similar to the one shown in fig. 5. The simulations dif-
fer by the isochronized magnetic field they are performed in.
The magnetic fields are characterized by the ion extraction
energy they provide, that is by the ion energy corresponding
to the equilibrium orbit with R,,, = 84 cm in the given field.
The output of each run is the maximal axial half-envelope
of the beam achieved along the simulated trajectory. The
condition used to define the focusing limits is that the maxi-
mal achieved envelope is not larger than 135% of the initial
vertical beam size. The points marked with an open symbol
correspond to the focusing limits. The vertical lines depict
the focusing limits for each of the three cyclotron models
predicted by the axial betatron instability criterion

extraction region define the focusing limit more
precisely than the standard axial betatron instabil-
ity criterion. However, the described beam dy-
namics simulations are tedious because they re-
quire a very small step size and consequently
substantial computational time. In our examples,
the acceleration orbit makes about forty turns in
the 2 cm wide simulation region. A 1 mm displace-
ment of the simulation end point seems reasonable
when compared to the radial width of the simula-
tion area or total length of the trajectory and too
large when compared to the average radial distance
of 0.5 mm between the consecutive turns in the
simulation area. Due to the length of the simulated
trajectory, a reasonable numerical error corre-
sponds to a large number of simulated steps. Con-
sequently, the computational time required even
for the not so large number of test particles in a
beam easily overgrows the time one would be com-
fortable with. This problem can be solved if the
simulation area is narrowed down to a single equi-
librium orbit. The competition between the focus-
ing forces of the azimuthal magnetic field gradient
introduced by sectors and defocusing forces of the
radial field gradient caused by the isochronous
shape of the field can be observed through the axial
size of the beam gyrating on an equilibrium orbit.
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If the resulting forces along the orbit are
defocusing, their effect is enhanced as many times
as the number of turns a beam makes on the orbit.
Thus, in order to detect the defocusing effect, it is
sufficient to simulate only several instead of forty
turns. Since the simulated trajectory is shorter, the
step size providing an acceptable numerical error is
larger. The shorter simulation path as well as the
larger step size contributes to the smaller number
of simulated steps and consequently shorter
computational time. In order to enable compari-
son of defocusing effect at different equilibrium
orbits, the criterion for the end of simulation was
taken to be the fixed total length of the simulated
trajectory rather than the fixed number of turns.
The 30 m long simulated trajectory corresponding
to approximately five to six turns and the integra-
tion step size that provides the radial simulation er-
ror equal to the one that corresponds to the acceler-
ated orbit simulations resulted in 600 times faster
simulation.

The equilibrium orbit that replaces the 2 cm
wide simulation area in the beam defocusing study
must be carefully chosen. It should be the orbit that
is most affected by the defocusing forces. Figure 7
shows the maximal axial beam size achieved during
simulation for different equilibrium orbits along
which the beam gyrates in a sample magnetic field.
An equilibrium orbit is characterized by its maximal
orbit radius Ry, rather than by its mean orbit ra-
dius R,,,, to ease the justification of the orbit choice.
The orbit experiencing the strongest defocusing is
the one whose R ,,.x = 86 cm. The explanation lies in
the equilibrium orbit placement relative to the max-
imum of the radial magnetic field gradient. On an
equilibrium orbit, the beam experiences the stron-
gest defocusing in the region where the beam trajec-
tory is perpendicular to the radial gradient of the
magnetic field. Thus, the strongest defocusing re-
gions on an equilibrium orbit are around the maxi-
mum and the minimum orbit radii. Among equilib-
rium orbits in a given magnetic field, the one
corresponding to the strongest defocusing has its
R . In the area where the radial gradient of the field
is the largest, see fig. 8. For our sample cyclotron
model magnet with g, = 36.4 mm the maximum of
the radial magnetic field gradient is at7 = 86 cm for
all the test magnetic fields. The orbit whose mini-
mal orbit radius is at 86 c¢m is not considered be-
cause it is mostly outside the isochronous field re-
gion defined by r < 87 cm. Therefore, the critical
equilibrium orbit in a given magnetic field has its
maximal orbit radius equal to the radial position of
the maximum of the radial magnetic field gradient.

The curve with open symbols in fig. 9 shows
the results of the beam defocusing study performed
by the beam dynamics simulations along the critical
equilibrium orbit. The results of the focusing limit
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Figure 7. Beam defocusing on different equilibrium
orbits

The results correspond to the model magnet with the
magnetic gap of 36.4 mm and isochronized magnetic
field characterized by the ion gyration frequency of 20.9
MHz. The data points on the curve represent different
equilibrium orbits which are on the lower axis character-
ized by maximal orbit radius R, and on the upper axis
by the energy of a test ion gyrating on them. A beam gy-
rates along each orbit until the length of the simulated
trajectory reaches 30 m which corresponds to 5 to 6 turns.
The dependence of the maximal obtained axial half-en-
velope on the equilibrium orbit along which the beam gy-
rates is given. The orbit corresponding to the maximum of
the axial beam size is referred to as the critical equilib-
rium orbit. It turns out that not only for this example but
also for all prepared test isochronized magnetic fields the
critical equilibrium orbit has the same value of Ry, = 86
cm. Figure 8 gives the explanation of and justification for
this phenomenon

study obtained with the other two methods shown
in fig. 6 that correspond to g,, = 36.4 mm are also
given in fig. 9 for the comparison purposes. The fo-
cusing limit is the point at which the slope of the
curves starts to grow. Note that the “knee” of the
curve corresponding to the equilibrium orbit
method is more pronounced if the simulated trajec-
tory is longer and, consequently, it is easier to deter-
mine the focusing limit. The focusing limit ob-
tained with the equilibrium orbit method coincides
with the one resulting from the beam dynamics sim-
ulation along the acceleration orbit.

CONCLUSION

The standard method to define the focusing
limit of a cyclotron is to use the axial betatron insta-
bility criterion v, = 0. This equation is obtained
from the simplified equations of a test particle mo-
tion around the equilibrium orbit. Since it is the in-
stability criterion, the beam size corresponding to it
is infinitely large. Therefore, the focusing limit ob-
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Figure 8. Critical equilibrium orbit

The radial dependence of the radial gradient of the mag-
netic field and a quarter of the critical equilibrium orbit is
given for the model magnet with g,, = 36.4 mm and the
isochronized magnetic field with f = 20.9 MHz. The
defocusing axial force acting on a particle displaced from
the median plane (z = 0) is proportional to the radial com-
ponent of the magnetic field and to the azimuthal compo-
nent of the particle’s velocity. The azimuthal component of
the particle’s velocity is the largest when the radial velocity is
zero, that is in the region around the maximal and the mini-
mal equilibrium orbit radii. In the first approximation, the
radial component of the magnetic field outside the median
plane is proportional to the radial gradient of the magnetic
field in the median plane. Thus, the strongest defocusing oc-
curs when R, is equal to the radial position of the maxi-
mal radial gradient of the field. Such equilibrium orbit is
labeled as the critical equilibrium orbit

tained by using this method is not only approximate
but not achievable as well. The equations of motion
used to perform beam dynamics simulations along
the acceleration orbit in the beam extraction region
are not simplified, so this method is a more accurate
method for the focusing limit computation. The
criterion used to determine the value of the focusing
limit is that the beam size during simulation does
not increase for more than 35% which is safely
above the numerical error. However, the length of
the acceleration orbit in the extraction region is
large, the simulation step size must be small to
match the acceptable numerical error of the compu-
tation and consequently the large number of steps
makes these simulations very time consuming even
for the moderate number of test particles within the
beam. To overcome this problem, we suggest beam
dynamics simulations along the critical equilibrium
orbit. The critical equilibrium orbit is the one along
which the defocusing forces are pronounced mostly.
It is the orbit whose maximal radius is equal to the
radius of the radial magnetic field gradient maxi-
mum. The number of steps and computational time
is decreased as much as 600 times with no draw-
backs regarding the accuracy of the obtained focus-
ing limit.
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Figure 9. Focusing limits for model magnet with
gm = 36.4 mm

Each point marked by an open or a solid symbol represents
a beam dynamics simulation performed along the critical
equilibrium orbit or along the acceleration orbit, respec-
tively. The simulations were performed in an isochronized
magnetic fields defined by the ion gyration frequency and
the ion extraction energy. The results represented by the solid
symbols correspond to the simulations performed along the
acceleration orbit and are the same as those corresponding
to gn= 36.4 mm in fig. 6. The solid vertical line marks the
focusing limit defined by the standard axial betatron insta-
bility criterion, as in fig. 6. The criterion applied to define the
focusing limit for beam dynamics simulations was that the
maximal achieved beam size was not more than 35% larger
than the initial beam size. The focusing limits obtained with
this criterion for simulations along acceleration as well as
along the critical equilibrium orbit are the same and are de-
picted by the vertical dashed line. Therefore, the beam dy-
namics simulation along the critical equilibrium orbit
method for the focusing limit determination is as precise as
the simulation along the acceleration orbit method but far
less time consuming
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Cama T. hMPKOBUH, Jacua /b. PUCTUh-BYPOBUh
Anbemuja UJINh, He6ojmua HEMIKOBUR,
Agnekcej C. BOPOXKIIOB, Ceprej b. BOPOXKIIOB

KOHCTAHTA ®OKYCUPABA INKIOTPOHA:
OJPELUBABE HAJTAXEBEM TAYKE AKCUJAJTHE BETATPOHCKE
HECTABMIIHOCTHA NN CUMYJAIINJOM TUHAMMUKE JOHCKOI' CHOITIA

Y u30XpOHOM IUKJIOTPOHY KOju yOp3aBa joHe 0 peIaTUBUCTUUKUX CHEPTHUja pajiujaTHi OpacT
M30XPOHOT MarHeTCKOT M0Jba N3a3MBa aKCHjaTHO fepoKycupame cHona. OHO je KOMIIEH30BaHO YTUIajeM
a3WMYTaJTHOT T'pajljeHTa IoJkba KOju yHOce ceKTopHu. CrocoGHOCT hOoKycHuparma CeKTopa OrpaHmJaBa
MaKCHMAaJHy SHEeprujy A0 KOje laTa MallmHa MoxXe ja yop3a joHe. OBa MakcuMMallHa €Hepruja, Tj.
KOHCTaHTa (hOKycHpara IUKJIOTPOHA, OOMYHO ce oApebyje KopuimhemeM KpUTepHjymMa 3a aKChjaHy
HECTaOMITHOCT CHOMA, KOj TPOM3WIIa3y U3 jefHauYnHa OeTaTpOHCKUX ocumianuja. Mizpauynarta BpegHOCT
KOHCTaHTe (poKycrupama je NpubIIKHa, jep ce 6a3upa Ha jeflHaunHaMa 0eTaTPOHCKUX OcLUIalyja Koje Ccy
Takobe ampokcumaTuBHe. [IpeumsHo oapebuBame KOHCTaHTe (POKycupama je Moryhe cumynanujom
IMHAMUKe yOp3aBarbha CHOMA y €KCTPaKIMOHOM pernony. Ilokaszanm cMo fia ce pesynTaTu JoOujeHn
MIPUMEHOM jeHe, OTHOCHO JIpyre, METOJIe M3padyHaBama pas3iuKyjy yak u 3a Buire o 9%. [1pegnaskemo
kopumtheme Tpehe meTome onapebuBama KOHCTaHTe (pOKycHpama IHMKIOTPOHA, KOja ce OcClama Ha
CHMYJIAIHjy TUHAMUKE jOHCKOT CHOMNA YK KPUTUYHUX CTAIIMOHAPHUX PABHOTEXKHUX opouTa. [Ipemnoct
IPE/VIOKEHOr MPHUCTYyIa je INTO IMpy:Ka jefHaKy MPenu3HOCT Kao M MeTofa Koja KOpHcTu yOp3aHe
paBHOTEXKHE opOuTE, y3 3HAUajHO Kpahe BpeMe m3paduyHaBama.
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