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Here, we pres ent a three-dimensional model of track growth in nu clear track de tec -
tors. The equa tion for the track wall in three di men sions and the equa tion of the con -
tour line of the track open ing have been de rived for all types of tracks (i. e., tracks with
sharp tips and tracks with rounded tips). The ex pres sion for the sur face area of the
track open ing has also been found. The equa tions be come the well-known ex pres sions
for mi nor and ma jor axes for the spe cial case of con stant track etch rates.
Com pu ta tions of track pa ram e ters based on our model have been com pared with the
track growth mod els given by Somogyi and Szalay and the one given by Fews and
Henshaw.  Good agree ments have been found among these three in de pend ent mod els.

Key words: solid state nu clear track de tec tor, track growth, model

IN TRO DUC TION

The ge om e try of track de vel op ment has at tracted
much at ten tion for a long time (e. g., Henke and Benton,
[1], Paretzke et al. [2], Somogyi and Szalay [3], Somogyi
[4], Fromm et al. [5], Hatzialekou et al. [6], Ditlov [7],
Meyer et al. [8], Nikezi} and Kosti} [9]). Dur ing the etch -
ing, a track passes through dif fer ent phases. At the be gin -
ning, the track tip is sharp. With the pro longed etch ing
when the etch ing passes the end ing point of a par ti cle tra -
jec tory, the track tip be comes rounded. The track open ing
also passes through dif fer ent phases and it was an a lyzed in
de tails by Somogyi and Szalay [3]. The track open ing may 
be cir cu lar in shape when the in ci dent an gle is 900; if the
an gle is oblique, the track open ing is el lip ti cal, or in the
shape of an el lipse + cir cle, or cir cu lar, de pend ing on the
etch ing, en ergy and an gle  (for track etch rate  Vt = const.). 
If track etch rate is Vt ¹ const., the track open ing is semi-el -

lip ti cal or even a more com plex “egg-like” geo met ri cal fig -
ure. The mod els of the track growth pre sented by other
au thors are mostly two-di men sional. Some el e ments of
three-dimensionality may be found in Somogyi and
Szalay [3] and Fews and Henshow [10], but with out rig -
or ous treat ment. 

THE EQUA TION OF THE
TRACK WALL IN TWO
DI MEN SIONS 

The equa tion of the track wall can be de rived
in the fol low ing way. Re ferring to fig. 1, the point A
on the track wall with co or di nates (x, y) was formed
from the point x0 on the par ti cle track. From the
point (0, 0), the etch ing trav els with the track etch
rate Vt along the x-axis (which is the par ti cle tra jec -
tory) and reaches the point x0 at the time t0. From x0,
the etch ing pro gresses to the point A with the bulk
etch rate Vb. The an gle d = d(x0) is the an gle be -
tween Vt and Vb at the point x0, as shown in fig. 1,
and can be found as
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From the geo met ri cal point of view, it is clear
that

¢ = - = -
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This equa tion can not be used as the track wall
equa tion be cause the ex pres sion on the right de -
pends on x0, while the ex pres sion on the left de -
pends on x. Noting that x0 = x – Dx, we have

Dx y x x y x y x= × = - × ¢( ) ( ) ( ) ( )tg d 0 (3)

so we can ob tain 

x x y x y x0 = + × ¢( ) ( ) (4)
and

¢ = -
+ ¢ -

y
V x yy

1

12( )
(5)

This is the equa tion of the track wall in the dif -
fer en tial form with both sides de pend ing only on x.
Un for tu nately, this equa tion can not be solved an a -
lyt i cally. If the an gle d is small or if V(x) is a slowly
vary ing func tion (which is usu ally the case in many
ap pli ca tions) (see for ex am ple Dorschel et al [11,
12], y y¢ in the de nom i na tor of eq. (5) can be ne -
glected and the aproximation equa tion of the track
wall be comes

y
dx

V x
x

L

=
-ò 2 1( )

(6)

This ap prox i ma tion equa tion was pre vi -
ously used by Nikezi} [11] for the an a lyt i cal
three-di men sional de ter mi na tion of the track pa -
ram e ters.

The co or di nates (x, y) of the point A can be
cal cu lated in a sim pler way, i. e., 

y B x= cos ( )d 0 (7a)
and 

x x B x= +0 0sin ( )d (7b)
where 

B V T tb= -( )0 (7c)

and T is the to tal etch ing time. By us ing eqs. (7a) to
(7c), the co or di nates of the points on the track wall
can be gen er ated. The best fit will give

y F x L» ( , ) (7d)

as the equa tion of the wall, where L is the dis tance
pen e trated by the etch ing so lu tion (see fig.1).
How ever, the in for ma tion about Vt(x) is lost in this
way. An other pos si bil ity is to solve eq. (5) nu mer i -
cally, but this may be more com pli cated.

In the spe cial case where Vt/Vb = V = const.,
the track wall is rep re sented by a line in two di men -
sions, and eq. (7) be comes

y F x L x L

V
linear = = - +

-
( , )

2 1
(7e)

The equa tion of the track wall in the con i cal
phase in three di men sions for normal in ci dence can
be writ ten as

x y F z L2 2+ = ( , ) (8)

where the z-axis is along the par ti cle tra jec tory, and
(x, y) are co or di nates of the points in the track wall.
The track open ing is cir cu lar in shape when in ci -
dence is nor mal, but in an egg-like shape or a drop -
let-like shape when the in ci dence is oblique. The
con tour equa tion for the open ing is given by

¢¢ + ¢¢ = ¢¢ +x y F y
h L2 2 2sin ( cos

sin
, )q q

q

where x² and y² are co or di nates on the con tour of
the track open ing, q  is the in ci dent an gle with re -
spect to the de tec tor sur face and h is the to tal re -
moved layer.

In the cases where V is not a con stant, the track 
open ing is not an el lipse, but is egg-like in stead, or
has even more com pli cated shapes de pend ing on
the func tions F and ul ti mately on the func tion V.

OVER-ETCHED TRACKS:
NOR MAL IN CI DENCE 

In this sec tion, the over-etched tracks will be
con sid ered. The sche matic sketch of an over-etched
track in two di men sions is shown in fig. 2. Af ter a cer -
tain time the etch ing will reach the end point E of the
par ti cle range. At that time, the wall of the track is
formed and de noted by the num ber 1 in fig. 2. The
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Fig ure 1. Der i va tion of a two-dimensional equa tion
of the track wall

(9)



point A with co or di nates (z, y) is con tained in the track 
wall. The an gle be tween the tan gent t on the wall at
the point A and the z-axis is the lo cal de vel op ment an -
gle d. Al though fur ther etch ing will prog ress in all di -
rec tions with the same rate Vb, in clud ing the sur -
round ings of the point E, it can be char ac ter ized by
two pro cesses for eas ier treat ment, namely, the dis -
place ment for the dis tance d of the wall from the po si -
tion 1 to the po si tion 2, and the for ma tion of a sphere
around the point E with same di am e ter d. The point A
moves nor mally onto the tan gent t for a dis tance d to
the point A’ with co or di nates (z¢, y¢). The track wall
con sists of two parts, i. e., semi-conical and spher i cal.
These two parts in ter sect at points M1 and M2 (if the
prob lem is con sid ered in two di men sions). In the
three-dimensional rep re sen ta tion, in ter sec tion oc curs
at a cir cle, which is sche mat i cally shown in fig. 2.

From the geo met ri cal point of view, the re la tion -
ships be tween the (z, y) and (z¢, y¢) co or di nates are
given by

¢ = + ¢z z d sin cosd dand y = y+d (10)

By us ing eq. (7d) with L = R, and com bin ing
with eq. (10), one can ob tain the equa tion for the
semi-conical part (in the over-etched phase) in two di -
men sions as:

¢ = +y F z R d( , ) cosd (11)
or

¢ = ¢ - +y F z d R d( sin , ) cosd d (12)

Now, we can for mally re place y¢ with y, and z¢
with z, to get the equa tion for the track wall in two
di men sions as

y F z d R d= - +( sin , ) cosd d (13)

This is the equa tion of the track wall in two di -
men sions at the mo ment when the etch ing reaches
the end point of the par ti cle tra jec tory.

The equa tion of the track wall in three di men -
sions is given anal o gously to eq. (8) as

x y F z d R d2 2+ = - +( sin , ) cosd d (14)

The de tec tor sur face af ter etch ing is rep re -
sented by the plane p in fig. 2. The plane p is nor mal
to the z-axis which rep re sents the par ti cle tra jec tory.
The thick ness of the re moved layer is de noted by h
(see fig. 2). If z = h is sub sti tuted into eq. (14), the
equa tion of a cir cle in the plane p is ob tained as

x y F h d R d D2 2+ = - + = ¢( sin , ) cosd d (15)

where  D¢ is the ra dius of the cir cle and (x, y) are the
co or di nates of points on the cir cle. The an gle  d in
eqs. (14) and (15) is the lo cal de vel op ing an gle at
the point N (fig. 2). All points of the track-opening
con tour were de vel oped from the same point N on
the par ti cle path un der the same de vel op ing an gle d. 
This re mark can be gen er al ized to all points with the 
same z and same de vel op ing an gle d. The di am e ter,
D = 2 D¢, of the cir cu lar track open ing is found as

D D F h d R d= ¢ = - +2 2[ ]( sin , ) cosd d (16)

OBLIQUE IN CI DENCE

In this part, the case of the oblique in ci dence is 
con sid ered. Ap par ently, this sit u a tion is more com -
pli cated than the pre vi ous one. How ever, if two
trans for ma tions of the co or di nate sys tem are ap -
plied, the prob lem will be sim pli fied sig nif i cantly.

Semi-elliptical open ing

Semi-elliptical open ings are found when the
de tec tor sur face af ter etch ing has not crossed the
part of the sphere formed around the point E. In
this sec tion, such kind of tracks will be con sid ered.
The ge om e try used for con sid er ing a semi-elliptical
track open ing is pre sented in fig. 3. The no men cla -
ture is the same as that in the pre vi ous fig ures. A
new pa ram e ter is the an gle q which is the in ci dent
an gle with re spect to the de tec tor sur face. Around
the end point E of the par ti cle tra jec tory, a sphere
with ra dius d is formed which is joined with the
semi-conical part of the track wall. The plane p1 rep -
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Fig ure 2. Sche matic sketch of an over-etched track in
three di men sions



re sents the de tec tor sur face af ter etch ing, and h is
the thick ness of the re moved layer. The track is “cut” 
by the plane p1 un der the an gle q with re spect to the
par ti cle di rec tion (z-axis). The first step is a trans la -
tion of the co or di nate sys tem (x, y, z) from the point
O to the point O¢ with co or di nates O¢(0, 0, z0)
where z0 = = h/sinq. The newly ob tained sys tem
(x¢, y¢, z¢) is re lated to the orig i nal one through the
equa tions

¢ = ¢ = ¢ = -x x y y z z z, and 0 (17)

Equa tion (14) for the track wall in the new co -
or di nate sys tem be comes

¢ + ¢ = ¢ + - +x y F z z d R d2 2
0( sin , ) cosd d(18)

The sec ond step is a ro ta tion of the (x¢,y¢,z¢)
co or di nate sys tem through an an gle (p/2 – q)
around the x¢-axis. The newly formed co or di nate
sys tem (x², y², z²) is re lated to the (x¢, y¢, z¢) sys tem
through the equa tions

¢ = ¢¢ - ¢¢y y zsin cosq q
and                                                                                                              (19)

¢ = ¢¢ + ¢¢z y zcos sinq q

Equa tion (18) for the track wall in the (x², y², z²) sys -
tem is now
     

¢¢ + ¢¢ - ¢¢ =

¢¢ + ¢¢ + -

x y z

F z y z d

2 2

0

( sin cos )

( sin cos sin

q q

q q d, ) cosR d+ d (20)

The sur face of the de tec tor af ter etch ing is
given as  z² = 0. By sub sti tut ing  z² = 0 into eq.

(20), the in ter sec tion be tween the track wall and the 
new de tec tor sur face de scribed by z² = 0 is given as

¢¢ + ¢¢ =

= ¢¢ + - +

x y

F y z d R d

2 2 2 2

0

sin

( cos sin , ) cos

q

q d d (21)

Here, ¢¢x  and ¢¢y  are the co or di nate axis along
the plane p1 (both be long ing to the plane p1) and ¢¢z
is nor mal to  p1. In the case, ¢¢y  is ex tended along the
ma jor axis of the track and ¢¢x   is nor mal to it. This is
the equa tion for the con tour line of the track open -
ing in the semi-elliptical phase, where the track is
rounded but has not yet passed the spher i cal shape.
The an gle d, which ap pears in the eq. (21) im plic itly 
and var ies along the con tour line, makes cal cu la -
tions dif fi cult. How ever, the cal cu la tion of the con -
tour line is fa cil i tated by the fact that all points with
the same value of z have the same de vel op ing an gle d
(as em pha sized be fore).

Some con se quences of eq. (21)

Track length (ma jor axis)

The track length can be found from eq. (21)
when x² = 0. Here, the co or di nates y1 and y2 where
the con tour line crosses the y²-axis are found as

y F y

z d R d

1 2 1 2

0

, ,sin ( cos

sin , ) cos

q q

d d

= +

+ - +

[

] (22)

Note that un known vari ables y1 and y2 are on
both sides of eq. (22) and it er a tions are needed to
solve the equa tion. The length D of the track open -
ing is then equal to

D y y= +1 2 (23)

Track width (mi nor axis)

The track width can not be found by tak ing y² = 0 
be cause the cen ter of the open ing is shifted along the
y²- axis. In this case, the max i mum of the func tion
given in eq. (21) should be de ter mined by lo cat ing

dx

dy y

¢¢

¢¢

æ

è
çç

ö

ø
÷÷ =

max

0 (24)

where ymax is the value of  y² when x² has a max i mum.
Then ymax should be sub sti tuted into eq. (21) to find
the max i mum value xmax. The track width (mi nor axis
of the track open ing) is given by d = 2xmax. Such pro -
ce dures are rather com pli cated and im prac ti cal be -
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Fig ure 3. Oblique in ci dence



cause the an gle d also de pends on the co or di nate y. A
better ap proach is to per form cal cu la tions of x² from
eq. (21) and to de ter mine the max i mal value of x² by
sys tem at i cally chang ing the val ues of y² from y1 to y2.

Sur face area of track open ing

The sur face area S of the track open ing can
also be found from eq. (21) by per form ing the in te -
gra tion

S F y z d d y dy
y

y

= + - + -ò2 2
0

2 2

1

2

( cos sin cos ) sinq q d q

(25)

where y1 and y2 are de ter mined by eq. (22). Nu mer -
i cal in te gra tion is needed to de ter mine S. 

Track open ing in tran si tional phase

The plane rep re sent ing the de tec tor sur face af ter
etch ing in ter sects part of the sphere formed around the
point E. Con se quently, the track open ing con sists of two
parts, namely, semi-elliptical and cir cu lar. The ge om e try,
al though sim i lar to the pre vi ous case, is pre sented sep a -
rately in fig. 4. The two parts of the track wall,
semi-conical and spher i cal, are joined to the cir cle at the
points M1 and M2. The plane p2 cor re spond ing to the de -
tec tor sur face will cut the track af ter etch ing, so both the
semi-conical and the spher i cal parts will be crossed. As a
re sult, the com pli cated curve, namely, cir cle +
semi-ellipse, is formed in the p2 plane, which is also pre -
sented in fig. 4 in bold. The cir cle and the semi-ellipse are
also joined at the points de noted by A and  A¢ in fig. 4.
The semi-elliptical part of the track open ing (lower left di -
rec tion from the line A A¢) is rep re sented by the same eq.
(21) as was de rived above. The cir cu lar part is rep re sented
by the equa tion of a cir cle, and the pa ram e ters to be de ter -
mined are only the ra dius of the cir cle and the co or di nates
of the cen ter in the p2 plane. The equa tion of the sphere in
the (x, y, z) sys tem with the cen ter at the point with co or -
di nates (0, 0, R) and ra dius d is

x y z R d2 2 2 2+ + - =( ) (26)

Now, the pro ce dures for trans la tion of the co or -
di nate sys tem to the point (0, 0, z0) and the ro ta tion
through an an gle (p/2 – q) around x¢ should be re -
peated. Af ter these trans for ma tions see eqs. (17 and
19), the equa tion of the sphere in the (x², y ², z²) sys -
tem be comes

¢¢ + ¢¢ - ¢¢ +

+ ¢¢ + ¢¢ + - =

x y z

y z z R d

2 2

0
2

( sin cos )

( cos sin )

q q

q q 2
(27)

The in ter sec tion with the plane p2, which has
the equa tion z² = 0 in the (x², y², z²) co or di nate sys -
tem, gives the equa tion of the cir cle as

¢¢ + ¢¢ + - =

= - -

x y z R

d z R

2
0

2

2
0

2 2

[ ]cos ( )

( ) sin

q

q

There fore, the cen ter and the ra dius of the cir -
cle can be found from this equa tion, viz., the cen ter
is at the point  (0, –(z0 – R)cos q) in the p2 plane. The 
ra dius r of the cir cle is equal to

r d z R= - -2
0

2 2( ) sin q (28)

Ma jor and mi nor axes

The mi nor axis d is found through the larg est
value of the x co or di nate, xmax, of the con tour line,
re gard less of whether it be longs to the cir cu lar or
the semi-elliptical part of the open ing

d x= 2 max (29)

For de ter mi na tion of the ma jor axis, the
three-dimensional ap proach is not needed. The ma jor
axis is equal to the dis tance Q1Q2, fig. 5. The co or di -
nates of Q2 are found from eq. (27) by tak ing x = 0
while Q1 is the same as y1 in eq. (22). 

Sur face area of the track open ing

The sur face area is equal to the sum of those
for the cir cu lar and semi-elliptical parts.

Track open ing in cir cu lar phase

As etch ing pro gresses, the cir cu lar part will
con sti tute a larger pro por tion of the track open ing.
Ul ti mately, the en tire open ing will be come cir cu lar
and the track is com pletely spher i cal. The ma jor and 
mi nor axes of the track open ing are then equal to the 
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Fig ure 4. Tran si tional phase of the track de vel op ment

(27’)



di am e ter of the cir cle, which can also be found from
eq. (28).

CAL CU LA TION OF THE TRACK
PA RAM E TERS AND COM PAR I SON
WITH OTHER MODELS

Our model of the track growth pre sented above
was em ployed to cal cu late the ma jor-axis length D and 
the mi nor-axis length d of al pha-particle tracks in the
CR-39 de tec tor. The in put pa ram e ters in the model
in clude the in ci dent en ergy and an gle of the al pha par -
ti cle, etch ing time, the bulk-etch rate Vb and the Vt

func tion, i. e., the etch ing rate along the par ti cle track.
The ra tio V(R¢) = Vt/Vb can be used in stead, where R¢

is the re sid ual range of the par ti cles. It has been shown
ear lier that the ob tained val ues for D and d vary sig nif i -
cantly with the Vt func tion.

We have used V func tions found in the lit er a ture
for al pha par ti cles in the CR-39 de tec tor re ferred to as
the Green’s func tion in the pres ent work [11]

V a aG
a R

G
a R a RG G G= + + -- ¢ - ¢ - ¢1 11 3

2 4 5( )( )e e e

with

a a a

a a
G G G

G G

1 2 3

4 5

11 45 0 339 4

0 044 0 58

= = =

= =

. , . , ,

. , .and (30)

Some au thors have used the V func tion in the
form of V = a(R ¢)-b where a and b are con stants.
Such func tions are not con sid ered in the pres ent
work be cause V will be come too large when R ¢ is
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Fig ure 5.  Ma jor axis cal cu lated by three dif fer ent mod els of the track growth; solid line – Somogyi and Szalay
model, open cir cles – Fews and Henshaw model, open squares – Nikezi} and Yu model



very small; also, these func tions have no max ima
and do not rep re sent the re al is tic sit u a tion. In ad di -
tion, our soft ware re quires V = 1 at R ¢  = 0.

We have per formed cal cu la tions for the lengths of
ma jor and mi nor axes of the track open ings through the
func tions given in eq. (30) above. An other set of cal cu la -
tions has been per formed with the method given by
Somogyi and Szalay [3], also with the func tion given in
eq. (30), and the third group of cal cu la tions has been
done with the method de scribed by Fews an Henshaw
[10]. Re sults are given in fig. 5.

In all cal cu la tions the range of al pha par ti cles in
CR-39 de tec tor was de ter mined by SRIM2000 code
[12].

Com par i son be tween Somogyi-Szalay,
Fews-Henshaw, and Nikezi}-Yu mod els

The lengths for the ma jor axes were cal cu lated
for the in ci dent en er gies 1 MeV to 5 MeV (with the
step of 0.5 MeV) and an gles 400 to 900 (with the
step 100) of al pha par ti cles and the re sults are given
in fig. 5. All cal cu la tions were done with Green’s Vt

func tion. Solid lines are ob tained with the model of
Somogyi and Szalay [3] (here af ter re ferred to as the
SS model). The com puter pro grams for us ing the
SS model were also de vel oped by the au thors of the
pres ent work. Scat ter points were ob tained by
Fews-Henshaw [10] method (open cir cles) and
Nikezi}-Yu [13] model (open squares). The com -
puter pro gram based on Fews and Henshaw model
was also writ ten by the au thors of this work.

CONCLUSION

Con sidering that it er a tions were per formed for
the SS model in cal cu lat ing the lengths of the axes, and
nu mer i cal cal cu la tions are needed in other two mod els,
very good agree ment be tween these three in de pend ent
mod els has been found for the con sid ered ranges of in ci -

dent en er gies and an gles of the al pha par ti cles. We thus
con clude that the three mod els of the track de vel op ment
give com pat i ble re sults.
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TRODIMENZIONALNI MODEL RASTA TRAGA
– PORE\EWE SA DRUGIM MODELIMA

U ovom radu predstavqen je trodimenzionalni model rasta traga u ~vrstim detektorima
tragova nuklearnih ~estica. Izvedene su jedna~ine zida traga u tri dimenzije kao i jedna~ine
konturnih linija otvora traga za sve tipove tragova (tj. tragova sa o{trim vrhom i zaobqenih tragova).
Izraz za povr{inu otvora traga tako|e je  dobijen u ovom radu. Jedna~ine se svode na dobro poznate
izraze za malu i veliku osu otvora traga u specijalnom slu~aju konstantne brzine nagrizawa.

Parametri tragova izra~unati opisanim modelom upore|eni su sa dva modela rasta traga
prikazana u literaturi.  Na|eno je dobro slagawe izme|u ova tri nezavisno postavqena modela.


