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THREE-DIMENSIONAL MODEL OF TRACK GROWTH:
COMPARISON WITH OTHER MODELS
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Here, we present a three-dimensional model of track growth in nuclear track detec-
tors. The equation for the track wall in three dimensions and the equation of the con-
tour line of the track opening have been derived for all types of tracks (i. e., tracks with
sharp tips and tracks with rounded tips). The expression for the surface area of the
track opening has also been found. The equations become the well-known expressions
for minor and major axes for the special case of constant track etch rates.
Computations of track parameters based on our model have been compared with the
track growth models given by Somogyi and Szalay and the one given by Fews and
Henshaw. Good agreements have been found among these three independent models.
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INTRODUCTION

The geometry of track development has attracted
much attention for a long time (e. 4., Henke and Benton,
[1], Paretzke e al. [2], Somogyi and Szalay [3], Somogyi
[4], Fromm et 4. [5], Hatzialekou et 4. [6], Ditlov [7],
Meyer et al. [8], Nikezi¢ and Kosti¢ [9]). During the etch-
ing, a track passes through different phases. At the begin-
ning, the track tip is sharp. With the prolonged etching
when the etching passes the ending point of a particle tra-
jectory; the track tip becomes rounded. The track opening
also passes through difterent phases and it was analyzed in
details by Somogyi and Szalay [3]. The track opening may
be circular in shape when the incident angle is 90 if the
angle is oblique, the track opening is elliptical, or in the
shape of an ellipse + circle, or circular, depending on the
etching, energy and angle (for track etch rate ;= const.).
Iftrack etch rate is I/, # const., the track opening is semi-el-
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liptical or even a more complex “egg-like” geometrical fig-
ure. The models of the track growth presented by other
authors are mostly two-dimensional. Some elements of
three-dimensionality may be found in Somogyi and
Szalay [3] and Fews and Henshow [10], but without rig-
orous treatment.

THE EQUATION OF THE
TRACK WALL IN TWO
DIMENSIONS

The equation of the track wall can be derived
in the following way. Referring to fig. 1, the point A
on the track wall with coordinates (x,y) was formed
from the point x( on the particle track. From the
point (0, 0), the etching travels with the track etch
rate V; along the x-axis (which is the particle trajec-
tory) and reaches the pointxat the time 4. Fromx,,
the etching progresses to the point A with the bulk
etch rate V},. The angle 6§ = 6(x() is the angle be-
tween V; and V), at the point x, as shown in fig. 1,
and can be found as

(1

where (x0)
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Figure 1. Derivation of a two-dimensional equation
of the track wall

From the geometrical point of view, it is clear
that

1
VVz(xo )-1

This equation cannot be used as the track wall
equation because the expression on the right de-
pends on xj, while the expression on the left de-
pends on x. Noting that xy = x — Ax, we have

Y(x)=-1tgd(x,) =~ (2)

Ax = y(x)1g 5(x ) ==(x)-y'(x)  (3)

SO we can obtain

Xo =x+y(x)-y'(x) 4)
and

Yo e—t (5)

,/Vz(x+ wH-1

This is the equation of the track wall in the dif-
terential form with both sides depending only on x.
Unfortunately, this equation cannot be solved ana-
Iytically. If the angle 6 is small or if V(x) is a slowly
varying function (which is usually the case in many
applications) (see for example Dorschel et a/ [11,
12],y y' in the denominator of eq. (5) can be ne-
glected and the aproximation equation of the track
wall becomes

(6)

gt A
J;,/Vz(x)—l

This approximation equation was previ-
ously used by Nikezi¢ [11] for the analytical
three-dimensional determination of the track pa-
rameters.

The coordinates (x, y) of the point A can be
calculated in a simpler way, 7. ¢.,

y=Bcosd(x,) (7a)
and
x=x,+Bsind(x,) (7b)
where
B=V,(T-t,) (7¢)

and T is the total etching time. By using egs. (7a) to
(7¢), the coordinates of the points on the track wall
can be generated. The best fit will give

y~F(x, L) (7d)

as the equation of the wall, where L is the distance
penetrated by the etching solution (see fig.1).
However, the information about V(x) is lost in this
way. Another possibility is to solve eq. (5) numeri-
cally, but this may be more complicated.

In the special case where V,/V}, = V = const.,
the track wall is represented by a line in two dimen-
sions, and eq. (7) becomes

Viinear = F()C, L) =_x—+ll (76)

V?-1
The equation of the track wall in the conical
phase in three dimensions for normal incidence can

be written as
VX2 4y =F(z, L) (8)

where the z-axis is along the particle trajectory, and
(x,y) are coordinates of the points in the track wall.
The track opening is circular in shape when inci-
dence is normal, but in an egg-like shape or a drop-
let-like shape when the incidence is oblique. The
contour equation for the opening is given by

w/x"z+y"2sin20=F(y”cose+L,L) 9)
sin 6

where x” and y” are coordinates on the contour of
the track opening, 6 is the incident angle with re-
spect to the detector surface and 4 is the total re-
moved layer.

In the cases where V'is not a constant, the track
opening is not an ellipse, but is egg-like instead, or
has even more complicated shapes depending on
the functions F and ultimately on the function V.

OVER-ETCHED TRACKS:
NORMAL INCIDENCE

In this section, the over-etched tracks will be
considered. The schematic sketch of an over-etched
track in two dimensions is shown in fig. 2. After a cer-
tain time the etching will reach the end point E of the
particle range. At that time, the wall of the track is
formed and denoted by the number 1 in fig. 2. The
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point A with coordinates (z,y) is contained in the track
wall. The angle between the tangent ¢ on the wall at
the point A and the z-axis is the local development an-
gle 5. Although further etching will progress in all di-
rections with the same rate V}, including the sur-
roundings of the point E, it can be characterized by
two processes for easier treatment, namely, the dis-
placement for the distance d of the wall from the posi-
tion 1 to the position 2, and the formation of a sphere
around the point E with same diameter d. The point A
moves normally onto the tangent 7 for a distance d to
the point A” with coordinates (', y"). The track wall
consists of two parts, 7. ¢., semi-conical and spherical.
These two parts intersect at points M} and M, (if the
problem is considered in two dimensions). In the
three-dimensional representation, intersection occurs
at a circle, which is schematically shown in fig. 2.

From the geometrical point of view, the relation-
ships between the (z, y) and (Z', y') coordinates are
given by

z'=z+dsiné and y'= y+dcosé (10)

By using eq. (7d) with L = R, and combining
with eq. (10), one can obtain the equation for the
semi-conical part (in the over-etched phase) in two di-
mensions as:

Y =F(z, R)+d cosé (11)
or
y' =F(z'-dsinS, R)+d cos$ (12)

Figure 2. Schematic sketch of an over-etched track in
three dimensions

Now, we can formally replace y’ with y, and 2’
with z, to get the equation for the track wall in two
dimensions as

y=F(z—-dsiné8, R)+d cosé (13)

This is the equation of the track wall in two di-
mensions at the moment when the etching reaches
the end point of the particle trajectory.

The equation of the track wall in three dimen-
sions is given analogously to eq. (8) as

VJx*+y’ =F(z-dsind,R)+d coss (14)

The detector surface after etching is repre-
sented by the plane min fig. 2. The plane m is normal
to the z-axis which represents the particle trajectory.
The thickness of the removed layer is denoted by /
(seefig. 2). It z = h is substituted into eq. (14), the
equation of a circle in the plane 7 is obtained as

[x* +y* = F(h—dsin6, R)+d coss = D' (15)

where D' is the radius of the circle and (x, y) are the
coordinates of points on the circle. The angles in
egs. (14) and (15) is the local developing angle at
the point N (fig. 2). All points of the track-opening
contour were developed from the same point N on
the particle path under the same developing angle 5.
This remark can be generalized to all points with the
same z and same developing angle . The diameter,
D = 2 D', of the circular track opening is found as

D=2D'=2[F(h—dsind, R)]+d coss (16)

OBLIQUE INCIDENCE

In this part, the case of the oblique incidence is
considered. Apparently, this situation is more com-
plicated than the previous one. However, if two
transformations of the coordinate system are ap-
plied, the problem will be simplified significantly.

Semi-elliptical opening

Semi-elliptical openings are found when the
detector surface after etching has not crossed the
part of the sphere formed around the point E. In
this section, such kind of tracks will be considered.
The geometry used for considering a semi-elliptical
track opening is presented in fig. 3. The nomencla-
ture is the same as that in the previous figures. A
new parameter is the angle @ which is the incident
angle with respect to the detector surface. Around
the end point E of the particle trajectory, a sphere
with radius d is formed which is joined with the
semi-conical part of the track wall. The plane ) rep-
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resents the detector surface after etching, and 4 is
the thickness of the removed layer. The track is “cut”
by the plane m; under the angle Owith respect to the
particle direction (z-axis). The first step is a transla-
tion of the coordinate system (X, y, z) from the point
O to the point O’ with coordinates O'(0, 0, zg)
where zy = = h/sinf. The newly obtained system
(x',y',2') 1s related to the original one through the
equations

’

x'=x, y=yand z'=z-z, (17)

Equation (14) for the track wall in the new co-
ordinate system becomes

JX'P 4y =F(Z +2z, —dsinS, R)+d cos§18)

The second step is a rotation of the (x',y’,z")
coordinate system through an angle (n/2 - 0)
around the x'-axis. The newly formed coordinate
system (X", y”, z") is related to the (X', y', ') system
through the equations

Y =y"sin0-z" cosO
and (19)
z'=y"cosf+z"sin6

Equation (18) for the track wall in the (x", y", ") sys-
tem is now

VX" +(y" sin@—z" cos0)? =

F(z"sin@+y" cos@+z, —dsind, R)+d cosd (20)

The surface of the detector after etching is
given as z" = 0. By substituting z” = 0 into eq.

z” sz
A
I
E
n/2-0 y”
2
10' 7
0 - ¥
y
h K
N
Xhx"
X

Figure 3. Oblique incidence

(20), the intersection between the track wall and the
new detector surface described by z” = 0 is given as

‘/XI!Z +yn2 Sin2 92 —
=F(y"cosO+z,—dsind, R)+dcoss (21)

Here, x” and y" are the coordinate axis along
the plane 7; (both belonging to the plane ;) and z”
is normal to m;. In the case, y" is extended along the
major axis of the track and x” is normal to it. This is
the equation for the contour line of the track open-
ing in the semi-elliptical phase, where the track is
rounded but has not yet passed the spherical shape.
The angle §, which appears in the eq. (21) implicitly
and varies along the contour line, makes calcula-
tions difficult. However, the calculation of the con-
tour line is facilitated by the fact that all points with
the same value of z have the same developing angle &
(as emphasized before).

Some consequences of eq. (21)

Track length (major axis)

The track length can be found from eq. (21)
whenx” = 0. Here, the coordinates y; and y, where
the contour line crosses the y”-axis are found as

Vi, 8in0 =[F(y, , cosf+

+z, —d sind, R)+d cosd] (22)

Note that unknown variables y; and y, are on
both sides of eq. (22) and iterations are needed to
solve the equation. The length D of the track open-
ing is then equal to

D=y, [+|y,] (23)
Track width (minor axis)

The track width cannot be found by takingy” = 0
because the center of the opening is shifted along the
y"- axis. In this case, the maximum of the function
given in eq. (21) should be determined by locating

[ﬂj =0 (24)
dy Ymax

where y,,.« 18 the value of y” when x” has a maximum.
Then y,,.x should be substituted into eq. (21) to find
the maximum value x,,,,.. The track width (minor axis
of the track opening) is given by d = 2x,,,. Such pro-
cedures are rather complicated and impractical be-
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cause the angle ¢ also depends on the coordinate y. A
better approach is to perform calculations of x” from
eq. (21) and to determine the maximal value of x” by
systematically changing the values ofy” fromy toy,.

Surfice aven of track opening
The surface area § of the track opening can

also be found from eq. (21) by performing the inte-
gration

Y2
S = ZJ\/FZ(y cosf + z, —dsin@ + d coss ) — y*sin*Ody

bt

(25)

wherey; andy, are determined by eq. (22). Numer-
ical integration is needed to determine S.

Track opening in transitional phase

The plane representing the detector surface after
etching intersects part of the sphere formed around the
point E. Consequently, the track opening consists of two
parts, namely; semi-elliptical and circular. The geometry,
although similar to the previous case, is presented sepa-
rately in fig. 4. The two parts of the track wall,
semi-conical and spherical, are joined to the circle at the
points M; and M,. The plane , corresponding to the de-
tector surface will cut the track after etching, so both the
semi-conical and the spherical parts will be crossed. As a
result, the complicated curve, namely cirde +
semi-ellipse, is formed in the , plane, which is also pre-
sented in fig. 4 in bold. The circle and the semi-ellipse are
also joined at the points denoted by A and A’ in fig. 4.
The semi-elliptical part of the track opening (lower left di-
rection from the line A A’) is represented by the same eq.
(21) as was derived above. The circular part is represented
by the equation of a circle, and the parameters to be deter-
mined are only the radius of the circle and the coordinates
of the center in the , plane. The equation of the sphere in
the (x, y; z) system with the center at the point with coor-
dinates (0, 0, R) and radius d is

x*+y*+(z-R)* =d? (26)

Now, the procedures for translation of the coor-
dinate system to the point (0, 0, zy) and the rotation
through an angle (/2 — ) around x’ should be re-
peated. After these transformations see egs. (17 and
19), the equation of the sphere in the (x",y ", 2") sys-
tem becomes

x"? +(y"sin@—z" cos@)* +

+(y"cosO+z"sin0+z, —-R)* =d*  (27)

The intersection with the plane 7,, which has
the equationz” = O in the (x”,y”,z") coordinate sys-
tem, gives the equation of the circle as

4z, Zz
z”

Figure 4. Transitional phase of the track development

x"? +[y" +cos(z, —R)])* =
=d* —(z, —R)*sin’ 0 (27°)

Therefore, the center and the radius of the cir-
cle can be found from this equation, viz., the center
isatthe point (0,—(zp—R)cos0) in the mt, plane. The
radius 7 of the circle is equal to

r=yd*—(z, -R)*sin’60 (28)
Major and minor axes

The minor axis d is found through the largest
value of the x coordinate, x,,,, of the contour line,
regardless of whether it belongs to the circular or
the semi-elliptical part of the opening

d=2x (29)

For determination of the major axis, the
three-dimensional approach is not needed. The major
axis is equal to the distance Q0, fig. 5. The coordi-
nates of Q, are found from eq. (27) by takingx = 0
while Oy is the same as y; in eq. (22).

Surfice aven of the track opening

The surface area is equal to the sum of those
tor the circular and semi-elliptical parts.

Track opening in circular phase

As etching progresses, the circular part will
constitute a larger proportion of the track opening.
Ultimately, the entire opening will become circular
and the track is completely spherical. The major and
minor axes of the track opening are then equal to the



D. Nikezi¢, P. K. N. Yu, D. Kosti¢: Three-Dimensional Model of Track Growth: Comparison with Other Models 29

34 T T T T
.
2l 90° A
5 5
= 30 |
o B}
§ 26 y
S /
T 2l
=
22 | Q
20}
18 1 1 1 1
1 2 3 4 5
Energy [MeV]
34 T T T T
o
RE g v " 1
0 \ ]
E =t a 4
e
» 28} N
‘e o
& o /
s *I / 1
]
w 2t W J
E o
201 i
18 | ]
16 L L 1 L
1 2 3 4 5
Energy [MeV]
36 T T T T
4l ]
70° __ o
. 2L M -
£ -~ B8
S 30} P
B g
x /
§, 26 P -
©
S uf y ]
22+ g/ 4
201 J
181 A
18 ; ) ) ;
1 2 3 4 5

Energy [MeV]

38 T T T T
34 : g
60 o O ——
s A H
i 8
E 3o o. 1
=
% T o 1
. 26| g g
S a
[v]
24 e
= y
2 , 4
o
20 E
18 4
16 1 i 1 1 i 1
1 2 3 4 5
Energy [MeV]
36 T T T T T T L]
N g E
. .a
_ m} 50 o .
E_ 30+ o 4
@ 8L o .
=
< 2| o 4
S
T 24+ E
o
=l E
20k o T
18 E
16 | .
14+ E
12 1 1 1 1
1 2 3 4 5
Energy [MeV]

Major axis [um]|

S
L=
T N N SR T TN Y SO SN B B Y

)
-3

T T T T T T T T T T T T
o

12 1 1 1 1
1 2 3 4

o

Energy [MeV]

Figure 5. Major axis calculated by three different models of the track growth; solid line - Somogyi and Szalay
model, open circles - Fews and Henshaw model, open squares - Nikezi¢ and Yu model

diameter of the circle, which can also be found from

eq. (28).

CALCULATION OF THE TRACK
PARAMETERS AND COMPARISON
WITH OTHER MODELS

Our model of the track growth presented above
was employed to calculate the major-axis length D and
the minor-axis length d of alpha-particle tracks in the
CR-39 detector. The input parameters in the model
include the incident energy and angle of the alpha par-
ticle, etching time, the bulk-etch rate V}, and the V;
function, . e., the etching rate along the particle track.
The ratio V(R') = V/V}, can be used instead, where R’

is the residual range of the particles. It has been shown
carlier that the obtained values for D and d vary signifi-
cantly with the V; function.

We have used V' functions found in the literature
for alpha particles in the CR-39 detector referred to as
the Green’s function in the present work [11]

V=1+ (alce"“ZGR' + awe"““cR' )(1 —e'““;R')

with
a,; =11.45, a,; =0.339, a,; =4,
a,; =0.044, and a,, =058  (30)

Some authors have used the V' function in the
form of V' = a(R')™® where a and b are constants.
Such functions are not considered in the present
work because V' will become too large when R ' is
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very small; also, these functions have no maxima
and do not represent the realistic situation. In addi-
tion, our software requires V= 1atR’ = 0.

We have performed calculations for the lengths of
major and minor axes of the track openings through the
functions given in eq. (30) above. Another set of calcula-
tions has been performed with the method given by
Somogyi and Szalay [3], also with the function given in
eq. (30), and the third group of calculations has been
done with the method described by Fews an Henshaw
[10]. Results are given in fig. 5.

In all calculations the range of alpha particles in
CR-39 detector was determined by SRIM2000 code
[12].

Comparison between Somogyi-Szalay,
Fews-Henshaw, and Nikezi¢-Yu models

The lengths for the major axes were calculated
for the incident energies 1 MeV to 5 MeV (with the
step of 0.5 MeV) and angles 40° to 90° (with the
step 10°) of alpha particles and the results are given
in fig. 5. All calculations were done with Green’s V,
function. Solid lines are obtained with the model of
Somogyi and Szalay [3] (hereafter referred to as the
SS model). The computer programs for using the
SS model were also developed by the authors of the
present work. Scatter points were obtained by
Fews-Henshaw [10] method (open circles) and
Nikezi¢-Yu [13] model (open squares). The com-
puter program based on Fews and Henshaw model
was also written by the authors of this work.

CONCLUSION

Considering that iterations were performed for
the SS model in calculating the lengths of the axes, and
numerical calculations are needed in other two models,
very good agreement between these three independent
models has been found for the considered ranges of inci-

dent energies and angles of the alpha particles. We thus
conclude that the three models of the track development
give compatible results.
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Hparocnas HUKE3WHh, [letep K. H. JY, Iparana KOCTUh

TPOONMMEH3UOHAJTHU MOJEJI PACTA TPATA
-INOPEBEIBLE CA IPYI'MM MOIEINMA

Y oBOM pajly IpefcTaB/beH je TPONMMEH3NOHATHI MOJIETI pacTa Tpara y YBPCTUM AETEKTOpHMa
TparoBa HYKJIEApHUX 4ecTHIa. VI3BeneHe cy jeHAuUMHE 3Wjla Tpara y TpU AMMEH3Hje Kao U jeffHaunHe
KOHTYPHHUX JINHHja OTBOpA Tpara 3a CBe THIIOBE Tparosa (Tj. Tparosa ca OLITPUM BPXOM 1 3200JbEHHX TParosa).
W3pa3 3a noBpiIMHYy OTBOpa Tpara Takobe je AoOMjeH y OBOM pafly. JeflHauuHe ce CBOJie Ha JOOpO MO3HaTe
m3pase 3a MaJly ¥ BEJIUKY OCy OTBOpA Tpara y CIelfjaTHOM CIIy4ajy KOHCTaHTHEe Op3WHE Harpu3ama.

ITapameTpu Tparosa n3pavyHaTH OIIMCAHNM MOJIEJIOM yIiopebheHu cy ca iBa Mojienia pacta Tpara
npukasaHa y nuteparypu. HabeHo je oOpo ciarame u3smeby oBa Tpu HE3aBUCHO OCTaBIbeHA MOJIETIA.



