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This paper deals with the analysis of experimental positron lifetime spectra in polymer
materials by using various algorithms of neural networks. A method based on the use
of artificial neural networks for unfolding the mean lifetime and intensity of the
spectral components of simulated positron lifetime spectra was previously suggested
and tested on simulated data [Pézsit et al, Applied Surfce Science, 149 (1998), 971. In
this work, the applicability of the method to the analysis of experimental positron
spectra has been verified in the case of spectra from polymer materials with three
components. It has been demonstrated that the backpropagation neural network can
determine the spectral parameters with a high accuracy and perform the decomposi-
tion of lifetimes which differ by 10% or more. The backpropagation network has not
been suitable for the identification of both the parameters and the number of spectral
components. Thercfore, a separate artificial neural network module has been designed
to solve the classification problem. Module types based on self-organizing map and
learning vector quantization algorithms have been tested. The learning vector quan-
tization algorithm was found to have better performance and reliability. A complete
artificial neural network analysis tool of positron lifetime spectra has been constructed
to include a spectra classification module and parameter evaluation modules for
spectra with a different number of components. In this way, both flexibility and high
resolution can be achieved.

Key words: positron lifetime spectva, unfolding procedure, spectral parameters, backpropagation
network, spectral components, classification, SOM and LVQ algovithms

INTRODUCTION

Positron annihilation lifetime spectroscopy
(PALS) is widely used in the study of defects in
metals and semiconductors, as well as in the study
of free volume in polymer materials. This experi-
mental technique is a powerful tool for probing the
microstructure of condensed matter and shows an
advantage over other microprobes. Defect spectros-
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copy should provide information about the kind and
concentration of the defects under considerations.
The positron annihilation technique is based
on the positron capture in defects. In most applica-
tions, the positron is produced in the B*-decay of
the radioactive isotope ??Na. The source is sand-
wiched between two identical pieces of the sample.
The positron loses energy in the interactions with
the material and slows down to thermal energy with
the mean positron penetration depth of about 100 pm.
Compared to the positron lifetime in solids, the
thermalization process usually takes a rather short
time, up to a few picoseconds, and can be neglected.
The positron in thermal equilibrium with the envi-
ronment begins the diffusion process with the dif-
fusion length of about 100 nm. During the diffu-
sion, the positron interacts with defects in the solid
and the trapping of the positron into a localised state
may happen. The diffusion length strongly deter-
mines the sensitivity of the positron method to
detect defects. Finally, the positron annihilates with
an electron, resulting mostly in the emission of two
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gamma quanta of 511 keV and, in special cases, the
annihilation of the positronium can lead to two or
three annihilation gamma quanta. When the posi-
tron is trapped in a defect, the annihilation parame-
ters are changed. Positron lifetime is longer due to
the lower electron density and the positron-electron
pair momentum distribution is wider at the defect
site. This method is very sensitive to the open-vol-
ume defects such as monovacancies and larger va-
cancy clusters. The development of the slow-posi-
tron-beam technique has provided the examination
of the regions close to the surface or the surface
itself. Several experimental techniques of positron
annihilation, such as the angular correlation of an-
nihilation gamma quanta, Doppler broadening of the
annihilation line and positron lifetime spectroscopy were
developed for detecting defects in various materials [1].

A fast-fast coincidence spectrometer with a
high time resolution is conventionally used for posi-
tron measurement. The positron lifetime spectrum
is obtained as the number of annihilating positrons
per time channel in the multi-channel analyser and
is the absolute value of the time derivative of the
positron decay spectrum. All positron experimental
techniques provide the trapping rate that is propor-
tional to defect concentration.

The construction of a pulsed beam for slow
positrons is near to completion at the Reactor
Physics Department, Chalmers University of Tech-
nology, Géteborg, Sweden. The final beam will be
operated at 50 MHz with a 20 ns time window. The
design of a sample chamber and an acceleration
system which could locate the positron deeper in
the samples will be finished soon. Besides the con-
struction of the beam, there is an intention to run
the conventional positron measurements z. £., posi-
tron lifetime spectroscopy and Doppler broadening
spectroscopy of the annihilation line, based on the
positrons emitted from the source 2?Na [2].

There is a continuously increasing interest in
the application of defect spectroscopy, as well as in
the improvement of data processing. The main goal
of the positron experimental data analysis is the
determination of defect concentrations of the
dominant positron trapping centres. Several com-
puter codes were developed for this purpose. The
computer program PATFIT [3], based on the
Gauss-Newton fitting procedure, is used for the
conventional data analysis in which the experimen-
tal lifetime spectrum is expressed as a sum of several
exponential components convoluted with the in-
strument resolution function. In this method, one
has to specify the number of spectral components
before analysis. The accurate value of the time reso-
lution is also required to get a reliable solution. The
PATFIT analysis gives the average of the defect
lifetime, not the lifetime distribution. The program
code CONTIN [4, 5], based on the Laplace inver-

sion technique and the program code MELT [6, 7],
based on the maximum entropy principle and the
Bayes' theorem, can give continuous distribution of
positron lifetimes or annihilation rates. The latter pro-
gram has the advantage that the number of the spectral
components and the fime resolution of the instrument
are not required as the input parameters. Applications
of the continuous lifetime analysis reported in literature
show that the resclution of CONTIN is lower than that
of MELT. In some cases (e. 4., probing of semiconduc-
tors), CONTIN cannot separate lifetimes close to each
other, but gives only a peak broadening.

A new method based on the use of artificial
neural networks (ANN) for unfolding the mean
lifetime and intensity of the spectral components of
simulated positron lifetime spectra was suggested
and partially tested in our previous paper [8]. In the
present work, the capabilities of the method to
analyse experimental data is demonstrated in the
case of three component spectra obtained from
free-volume measurements of polymer materials
[9]. The backpropagation ANN described in [8] has
been trained by simulated spectra when expanding
the range of the intensities and lifetime spectral
components in order to cover the regions of the
experimental parameter values. The variation of the
parameter values was made much finer in order to
obtain a higher precision of the neural network in
the evaluation of the spectrum parameters. In gen-
eral, a similar backpropagation ANN can be de-
signed and tuned for any other number of spectral
components. In order to achieve flexibility and to be
able to unfold the spectra with an unknown number
of spectral components, the standard ANN module
has been combined with a special classification
model. Classification modules based on self-organ-
izing map (SOM) and learning vector quantization
(LVQ) algorithms have been developed and their
reliability in identifying the number of the spectral
components tested.

EVALUATION OF THE
EXPERIMENTAL POSITRON
SPECTRA PARAMETERS

A hundred experimental positron spectra with
three spectral components obtained from polymer
materials were available for the ANN test (paper VI
in [9]). A portion of them is shown i fig. 1.
PATEFIT analysis of the spectra has served as a basis
for the evaluation of the validity of the ANN. A
neural network of the same type as in the earlier
work [8] has been constructed, namely a three-lay-
ered feed-forward network with backward error
propagation. Simulated lifetime spectra have been
generated by the Posgen code [10] by an algorithm
based on eq. (1). In the case of discrete lines in the



18

Nuclear Technology & Radiation Protection — 1/2003

Log [number of counts]

i
0 500 1000 1500 2000 2500
Time channel

Figure 1. Experimental positron spectra

lifetime profile, a measured spectrum Y(f) can be
expressed in the form [11]:

Y(0)= R@)-(N,SLe™ +B) (1)
i=1

where R(f) is the detector resolution function with
which the measured signal is convoluted, B is a
random background, N, is a total number of counts,
I; and 4; are the intensity and positron annihilation
rate of the i-th spectral component, respectivelly,
and n is the number of spectral components. Actual
experimental parameters, such as the time channel
width and the FWHM of the Gaussian component
of the resolution function, have been included in the
Posgen code. In order to obtain a higher accuracy
and resolution of the network, it was essential to
generate spectra over the whole region of the pos-
sible variations of the experimental values of life-
times and intensities when building a fine mesh. A
set of 18200 has been used in the trainings process.
Both simulated and experimental spectra have been
normalized to the maximum value and the start-up
region, where the signal rises very fast to reach
maximum, has been excluded.

The number of the input nodes of the network
was set equal to the number of time channels. The
number of the output nodes is equal to the number
of parameters to be determined, i. ¢., three intensi-
ties and three lifetimes in our case. The number of
nodes in the hidden layer was found by trial end
error. In our case, its optimal value of 40 nodes is
the same as in the earlier work [8]. Several faster
algorithms were applied for the training of the
network [12]. A resilient algorithm was chosen as
the optimal one since it shows an advantage in the
instance of a large input, when the slope of sigmoid
function approaches zero. In that case, a very small
magnitude of the gradient can cause small changes
in the weights and biases, even though the weights
and biases are far from their optimal values. The
resilient backpropagation-training algorithm elimi-

nates these effects and takes into account only the
sign of the derivative to determine the direction of
the weight update. A set of additional 90 spectra,
non-identical with any of the training samples, was
generated by simulation [10] for testing the accu-
racy of the network tuning.

Two versions of the ANN code have been used
in the training process, namely, a serial code running
ona SUN ULTRA 10 station, and a parallel version
implemented on the SGI Origin 2000 parallel com-
puter at Chalmers university [13]. The tuned net-
work reproduces the intensities and lifetimes of the
90 test patterns with an accuracy given in tab. 1.
The average relative error with respect to the target
values and the standard deviation of the error taken
over all test samples are shown. The results from the
evaluation of the experimental spectra (the recall
phase of the ANN) are presented in fig. 2a and fig.
2b for the intensities and the lifetimes, respectively.

Table 1. The results of testing the neural network
performance with 90 test patterns

hi%] | ni[ns] |B[%]| z2(ns] |I3[%]| z3[ns]
Rangeof |14 2410.16-0.24 | 42-52| 0.38-0.48 | 24-34 | 1.65.2.85
Aramerers
Average
rekaive 15 | 0002 | 04 | —002 |005]| -002
crror
Standard
deviation
gongion 1125 | os |63 | a2 22 1.6
error

As can be seen, standard deviations are larger
for the intensities than for the lifetimes. Accuracy is
better for parameters of the second and third spec-
tral component. In general, precision can be im-
proved by further refining the training parameter
mesh and by increasing the number of iterations in
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Figure 2a. Results of the experimental spectra
evaluation (Recall error of the intensitics)
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Figure 2b. Results of the experimental spectra
evaluation (Recall error of the lifetimes)

the training process. It has to be noted that the
performance of the ANN-unfolding technique in
practical applications depends very much on the qual-
ity of the simulation model. A more adequate simula-
tion model for the training samples would give better
agreement between the results of the neural network

unfolding procedure and the experimental values.

CLASSIFICATION OF POSITRON
LIFETIME SPECTRA BY
SOM AND LVQ ALGORITHMS

It was shown [8] that the backpropagation
neural network is not appropriate for the identifica-
tion of both the parameters and the number of
spectral components. This would require more
training samples, longer training times and a large
number of iterations that have prohibitively large
values for practical applications. The unknown
number of components represents an important
input parameter for the Posgen simulation code. In
addition, for the evaluation of spectra with a differ-
ent number of spectral components, separate back-
propagation networks with a different strucrure
should be used for practical reasons. For these
reasons, a new network was designed only for iden-
tifying the unknown number of components. SOM
as well as LVQ algorithms have been applied. The
complete ANN analysis tool of positron lifetime
spectra includes the SOM or LVQ algorithms for
selecting the number of spectral componenets and
a backpropagation neural network for determining
the lifetimes and intensities.

Unsupervised neural networks are typically
used to extract features within data. The SOM
algorithm [14] does not utilise class information and
its results are inherently suboptimal. A self-organ-
izing map is particularly useful for visualisation

purposes. It maps a high dimension space to 2D
space and maintains the topology mappings. A
topological map is simply a mapping that preserves
neighbourhood relations. There is only one input
and one output layer, no hidden layer. Neurons in
the output layer are arranged on a regular flat grid.
Each neuron has an associated prototype vector and
after training, neighbouring neurons have similar
prototype vectors. The SOM algorithm finds the
closest matching neuron to the training input and
moves the weights of this neuron and those in the
neighbouring proximity towards the input vector.
The algorithm [15] described above was applied for
the extraction of the cluster structure of the simu-
lated positron lifetime spectra with two and three
components. Simulated spectra with 2 and 3 com-
ponents have been generated by the Posgen code to
test the classification module.

The input layer of the SOM network consists
of the simulated spectral data. The output layer is
the map constituted of neurons in 2D space. The
neurons learn to recognize groups of similar input
vectors in such a way that neurons physically close
together in the map grid respond to similar input
data. The determination of the map size is based on
the amount of data vectors and the principal eigen-
vectors of the input data. The input samples are
normalized so that each component has unit vari-
ance. The training is done in two phases: first with
large neighbourhood radius and then fine-tuning
with small radius. The distance matrix technique can
show the cluster structure of the spectral data. The
"U-matrix” visualises the cluster structure and
shows distances between neighbouring units of the
map, as well as the median distance from each map
unit to its neighbours. High values on the U-matrix
mean large distances berween neighbouring map
units and indicate cluster borders. The U-matrix
obtained for the simulated positron spectra with
two and three spectral components shows two dif-
ferent groups of spectral data with cluster borders,
fig. 3. The applied technique is appropriate for the
visualisation of the cluster structure of spectral data,
especially when a huge set of positron spectra should
be analysed. However, it cannot give clear informa-
tion on the classification of spectral data in input
space, since the visualisation technique is related to
the 2D map of neurons. In that case the map cannot
follow the spectral data in details, since the input
space dimension is much higher than the 2D map.
In order to get a better physical interpretation of the
results, the map can be labelled with corresponding
labels. Results displayed in fig. 3 show that the
SOM visualisation technique is convenient only
for a rough estimation of the cluster structure of
spectral data. Apart from this, the SOM algorithm
does not give correct results in a wide range of
spectral data, especially when Euclid distance be-
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U-matrix 1,08

Classification of spectral data 0,0515

Figure 3. SOM visualisation results and U-matrix
for the simulated positron spectra with two and
three spectral components

tween the data from different positron spectra are
too close to each other.

Therefore, a new network based on the LVQ
algorithm has been designed. The unsupervised
neural network has been transformed into a super-
vised LVQ neural network taking into account the
class information. The network architecture is simi-
lar to a SOM, but without a topological structure.
Two types of LVQ neural network were con-
structed, 1. e., with and without visualisation [16].
The input layer contains the spectral data with the
class information. The LVQ network without vis-
ualisation includes a competitive layer for finding
subclasses of input vectors and combining them into
target classes. The output layer of the LVQ network
with visualisation contains the map of neurons with

U-matrix
0.851

Positron spectra with two and three components

0.227

Figure. 4. LVQ visualisation results of the classifica-
tion of simulated positron spectra with two and three

components

the class information. The LVQ technique without
visualisation gives correct results in 97% of the cases
for all experimental positron spectra. This kind of
analysis provides a long output containing the class
information for each channel of spectral data. The
other kind of LVQ analysis with visualisation gives
a faster response, but the results are related to the
map of neurons, 7. ¢., not to the input space. In this
way one can obtain only a rough information on the
classification of positron spectra, depending on the
number of spectral components. Results of the
LVQ visualisation for the simulated positron spectra
with two and three components are presented in fig, 4.

Experimental positron spectra have been ana-
lysed by the SOM algorithm with visualisation tech-
nique. The number of the input nodes of the net-
work was set equal to the experimental data. The
neuron on the 2D map grid, that constitutes the
output layer, arranges itself so that neighboring
neurons recognize similar input vectors. Analysis of
experimental positron spectra by SOM visualisation
technique, fig. 5, correctly shows one class of data
corresponding to polymer spectra with three spec-
tral components. The map of neurons does not
indicate cluster structure. Values on the U-matrix
indicate the same result in comparison with U-ma-
trix for the simulated spectra with two and three
components. However, in a wider range of positron
spectra in which the spectral data are too close to
cach other, the SOM technique does not give cor-
rect results. For more precise information on it, one
can apply the LVQ technique without visualisation
to get classification results per channel of input
space.

U-matrix

0.328

164

0.0005

Figure 5. SOM visualisation results for
experimental positron spectra
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Cenaga ABJIWR, Pymjana YJAKAPOBA, Mmpe ITAXNUT

AHAJIM3A EKCIIEPUMEHTA/IHUX CIIEKTAPA BPEMEHA
AUBOTA MMO3UTPOHA MIOMORY HEYPAJITHUX MPEXA

Y papy ce aHanu3Apajy eKCNEPUMEHTAIHH CIEKTPH BPeMeHa XWBOTa MO3UTPOHA KOjH ¢y 106H-
JEHW Y TIONIMMEPCKIM MaTepHjantuMa ca fleheKTMa ToMohy PasiIHdMTHX aNropuTaMa HeypaXHAX Mpeska.
Hoe MeTop, 3acHOBaH Ha KOpHIThemy BEIITAUKUX HEYpPaNHMX MpeXa 3a eBalyalldjy BpeMeHa SKHBOTa
MHTEH3UTETA CIEKTPATHNX KOMIIOHCHTH CHMYNapHAX NO3HTPOHCKHUX CHEKTapa, NPEIOXKeH je U Napuu-
JalHO TecTHpaH y npeTxofiHoM pany [Pazsit et al, Applied Surface Science, 149 (1998), 97]. Onpie je Bepudu-
KOBaHa NPHMEH/EHBOCT METO/a 32 aHANM3Y eKCNEPUMEHTATHUX NMO3HTPOHCKMX CIeKTapa ca TpPH CIeK-
TpajiHe KOMIIOHEHTe y MoNMMepckuM Marepujanuma. Ilokasano je pga ce momohy Gexmpomarauuone
HeypajlHe MpeXKe MOT'Y Ofpe/iNTH CIeKTPallHi NapaMeTpH ca BUCOKOM TaYHOIIhY H 1a ce MOXKe H3BPIIHTH
ACKOMITO3HIMja BpeMEHa JXHBOTA NMO3NTPOHA KOjM ce pasmukyjy 3a 10% w euwe. ITomro cranmapmua
GexnponarauxoHa HEypalHa MpeXa HHje IOTOJlHA H 3a eBaJlyallHjy NapaMeTapa W 3a HIeHTHhUKaUM]y
HeMo3HaTor 6poja CHeKTPalHAX KOMIIOHEHTH, KOHCTPYHCaHa je noceGHa Mpeska 6asupana na SOM u LVQ
anTOPUTMAMA 3a pelllaBaibe MpobreMa Knacudukanmje cniekrapa. YTepbeno je na LVQ anropuram uma
6ome nepcpopmance u Behy MOy3aHOCT.





