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Efficiency calibration, i. e. determination of detection efficiency, ¢, is a crucial issue in gamma
spectrometry (quantification of gamma spectroscopic measurements) with semiconductor
and scintillation detectors. Comparing three possible ways to addressing the problem - rela-
tive, absolute and semi empirical - advantages of the latter are emphasized. Among semi em-
pirical models, efficiency transfer using effective solid angles, €2, is sorted out and briefly elab-
orated. This approach reduces the problem of efficiency calibration to the determination of
Q. It proved reliable and has been broadly used in practice, mainly in the form of the long ex-
isting ANGLE software. Progressing further, a generalized mathematical formula for calcu-
lations is developed - first of the kind - offering an opportunity for advanced applications of
gamma spectrometry. The formula enables unlimited flexibility in application, as it conve-
niently separates the source data from the detector data during the integration procedures (22
calculations). Its practicality is demonstrated for a number of typically encountered counting
arrangements, as well as for some exotic ones. The relevant formulae are used in PC calcula-
tions and numerical testing is further performed so as to check the validity of the mathemati-
cal method and the computer code. Care was taken of the optimization of complex numerical
procedures employed (involving fivefold numerical integration), so as to keep computation
times as low as possible (in order of minutes or even seconds on ordinary PC). Results ob-
tained are affirmative for both the method and the code. The model will be gradually incorpo-
rated into ANGLE software, thus making it readily available for routine use by gamma spec-
trometry community.
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INTRODUCTION

Forty years have passed since the advent of
semiconductor detectors and their subsequent intro-
duction into analytical practice, and even seventy from
the scintillation ones; quantification of gamma spec-
troscopic measurements is still a challenging task, for
which no definite/general practical solution is avail-
able so far. Given the fact gamma spectroscopy is one
of the two most widely applied techniques in nuclear
sciences, applications and industry (the other one be-
ing radiation dosimetry), that speaks on its own about
the importance of the topic.

For clarity purposes let us first distinguish spec-
troscopy as qualitative, and spectrometry as quantita-
tive analysis of gamma and/or X-ray emitting (i. e.
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spectroscopic) samples/sources. Here qualitative
means determining which radionuclides are present in
the sample and guantitative in what quantities (i. e.
concentrations) they are present. In other words, spec-
trometry means quantification of spectroscopic mea-
surements. Unfortunately, these two terms are often
indiscriminately/exchangeably used in literature,
which may confuse the reader, especially a newcomer
to the field.

A gamma spectrum is collected during a spectro-
scopic measurement (counting) by a gamma spectro-
scopic system, which basically consists of a detector,
coupled with multi channel analyzer, and supporting
electronics. Here the term detector encompasses
mainly semiconductor and scintillation ones, as the
vast majority of gamma detectors in use nowadays be-
long to these two categories.
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Spectrum here represents a distribution of regis-
tered photon interactions (within the detector active
body) vs. photon energy. Radionuclides are easily dis-
tinguished by their characteristic (fingerprint) spectra
of gamma and X-rays, enabling nuclide identification
from readily available nuclear data libraries. Spectro-
scopic analysis is thus reduced to energy calibration of
the system/detector used, which is a pretty simple,
even trivial task.

Spectrometric analysis is about converting the
number of counts (collected in full energy peaks in the
spectrum) into the activities of the corresponding
radionuclide(s) present in the sample (source). Spec-
trometry basically goes about efficiency calibration
for the given counting arrangement (counting arrange-
ment being the ensemble of the detector, source with
its container, and all gamma intercepting/absorbing
layers in between). Efficiency calibration can be sim-
ple in some particular cases (e. g. due to symmetry of
the counting arrangement), but in principle it is not — in
fact on the contrary, it is a complex problem, for which
no general solution has been provided up to now; see
e. g. classic radiation detection textbooks [13]. Huge
and ever growing evidence in scientific papers are tes-
timony to the efforts being continuously paid to this
aim by the gamma spectrometric community.

There are, in principle, three approaches to effi-
ciency calibration of semiconductor and scintillation
detectors [4]:

(1) Relative, where one tries to imitate as much
as possible the source by a standard (or vice versa)
while keeping the same counting conditions for the
two. Paid enough care, the result is, in general, so ac-
curate that cannot be surpassed by other methods.
However, gamma spectrometrists know too well what
enough care means in practice. Combined with the ut-
most inflexibility in respect with varying source and
container parameters (shape, dimensions, material
composition, positioning), this represents raison
d’étre of the other approaches, which follow.

(2) Absolute calculations are purely mathematical
approaches, with no supporting experimental evidence
whatsoever for the detector response. These are usually
variations of Monte Carlo (MC) methods. The MC are
essentially statistical treatments of the events which
photons undergo — from being emitted by a source atom
until the interaction with the detector active body — in-
cluding the treatment of the so produced electrons, posi-
trons and other subsequent energy carriers.

The absolute approach is beautifully exact, with
the condition that we consider a sufficiently large
number of incident photons, and that we know the de-
tails about (1) source, detector and intercepting layers'
geometrical/compositional data, (2) the correspond-
ing photon attenuation coefficients, (3) energy and an-
gle dependent cross sections for various photon inter-
actions with the detector active body, and (4)
parameters characterizing electron/positron behavior
in the latter.

In principle, unsatisfactory manufacturers' de-
tector specifications and relatively poor knowledge of
(many of) the previous physical parameters turn out to
be the limiting factors for its applicability. Inherent
statistical uncertainty of MC methods is a drawback as
well. However, with ever speeding up of computers,
and with more accurate detector specifications and
cross-section data (the determination of which is, on
its turn, related to more careful and sophisticated mea-
surements), it is reasonable to assume that time works
for absolute methods, and that in future they might be-
come the dominant ones.

(3) Semi empirical models, trying to conciliate the
previous two. Semi empirical models commonly con-
sist of two parts: (1) experimental, producing one kind
or another of reference efficiency characteristic of the
detector (detector response) and (2) relative to this cal-
culation of ¢,,. The inflexibility of the relative method is
avoided this way, as well as the demand for some physi-
cal parameters needed in absolute calculations.

Numerous variations exist within semi empirical
approach, with emphases either on experimental or on
calculation/computational part. However, most of
these simplify (or oversimplify) the physical model
behind, i. e. the treatment of (1) gamma attenuation,
(2) counting geometry, and (3) detector response.
Moens et al. [5] showed that only the simultaneous dif-
ferential treatment of these three factors is essentially
justified — any simplification would mean that the ex-
actness of the approach would be compromised. This
fact is transformed into the concept of the effective
solid angle, €2, a calculated value incorporating the
three components, and closely/simply related to detec-
tion efficiency (see further) — by determining £2 one
practically determines &,. Calculation of effective
solid angles can, therefore, be considered as the key to
quantitative gamma spectrometry.

A few hundred thousand gamma spectrometric
systems are in operation nowadays worldwide. The
majority of these are used for spectroscopic purposes
(i. e. qualitative analyses) only; the remainder is used
for spectrometry (quantification) as well. Among the
latter, the relative approach is still the most exploited
one, perhaps just because of the inertia in work. With
due respect for the quality of results obtained by the
relative method, this is a deplorable fact: by relying ex-
clusively on relative method, expensive equipment in
the labs and precious human resources are used far be-
low their potential.

THEORETICAL

The effective solid angle and
efficiency transfer

Given a gamma source (S) and a gamma detector
(D), fig. 1, the effective solid angle is defined as [46]
—
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Detector

Figure 1. To the definition of the effective solid angle, ©,
eq. (1); thick line represents the detector surface Sp
visible by the source

where Vs is the source volume and Sp = detector sur-
face exposed to the source (visible by the source).

Here T'is point varying over Vg, P point varying
over Sp, and 7 the external unit vector normal to infini-
tesimal area do at Sp,. Equation (1) is thus a fivefold in-
tegral. Factor F accounts for gamma attenuation of
the photon following the direction 7P out of the detec-
tor active zone, while F,,, describes the probability of
an energy degradable photon interaction with the de-
tector crystal (i. e. coherent scattering excluded), initi-
ating the detector response. The two factors include
therefore geometrical and compositional parameters
of the materials traversed by the photon.

With e, being proportional to Q the detection ef-
ficiency is found as

Q
P :gp,ref 57 (2)

ref

&

where index ref denotes reference counting geometry
to which the actual one is relative. This is basically the
efficiency transfer [7-10] using effective solid angles;
it can thus be addressed as ET-Q2 method for detection
efficiency calibration/determination.

Note that the above e, vs. Q proportionality holds
under the condition that peak to total ratio (P/7) is an in-
trinsic characteristic of the actual detector — fairly con-
stant and dependent on gamma energy only. This is gen-
erally assumed to be the case [5, 11-15], but caution is
called upon not to exaggerate/overreach with its appli-
cability, especially with low gamma/X-ray energies and
extended geometries. From the other side, attempting
exact treatment of P/T variations for a given detector
and varying counting conditions would hugely compli-
cate the (already complex) detection efficiency issue.
Apparently, the key words here are trade off and practi-

cality: for most gamma spectrometry applications, a
few percent uncertainties in ,, are acceptable and per-
ceived as a realistic expectation; it should be further
stressed that P/T usually contributes only a small frac-
tion of that. In environmental radioactivity monitoring,
for instance, the acceptable uncertainties are 5-10 %, in
waste management and nuclear decommissioning

10-20 % and in some application even higher. A notable

exception is radiation metrology, where uncertainties

even below 1 % may be requested — a condition only
relative method could realistically meet/comply with.

So as to apply the ET-Q method the following
should be known:

— —reference efficiency curve, obtained by counting
some known (calibrated) source(s) at a reference
position, and covering gamma energies, £, in the
region of interest (e. g. 50-3000 keV); consider-
able effort/care should be paid in this phase to
reach accurate &, ¢ vs. E, function, but it largely
pays off in further exploitation;

— geometrical and compositional data about the
source, detector and all intercepting layers (the
latter including source container and holder, de-
tector end cap and housing, crystal dead layers,
etc.); and

— gamma attenuation coefficients and densities for
all materials involved.

The method was originally introduced for the
use in neutron activation analysis (k;-NAA) and was
limited to the simple case of cylindrical sources coaxi-
ally positioned with the detector, and with radii
smaller than that of the detector [5].

Application in ANGLE software

Following the experiences with post Chernobyl
(1986) monitoring of radioactivity in various types of
bulky samples, the method was initially expanded to
large cylindrical sources [16] and Marinelli type ones
[17]. The first version of ANGLE software, with its
characteristic user friendly graphical interface, ap-
peared in 1994; it was written for DOS operating sys-
tem and supported various HPGe and Ge(Li) detectors
(coaxial, planar, well type) [4]. The enthusiastic/affir-
mative acceptance and constructive feedback by the
spectrometric community has inspired work on the
code development to continue ever since, producing
numerous updates/upgrades.

The latest version ANGLE 4 [18] was released
in 2016, fully refurbished and introducing many new
functionalities, including (1) support to scintillation
detectors (in addition to the existing semiconductor
ones), (2) discrete reference characterization of the de-
tector, (3) XML file format, (4) command line parame-
ters, (5) scaled preview (with zooming option) of the
counting arrangement, including all relevant details:
detector, source, container, intercepting layers, and
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their positioning, (6) multilanguage support (currently
operating in English, Chinese, Russian, French, Japa-
nese and Spanish), etc.

In its various versions, ANGLE is nowadays in
use in hundreds of gamma spectrometry based analyti-
cal laboratories worldwide (ref. [18]).

Mathematical generalization

Apparently, a generalization of the formula (1)
into a form which can be readily applicable to any
practical counting arrangement (source, detector, ge-
ometry) is not an easy mathematical task. The issue
was tackled by quite a number of authors, however
with solutions bound with more or less restraining
conditions. The complexity, yet reliability of the theo-
retical approach, followed by numerical calculations
is even more prominent in some other areas of gamma
spectrometry [19]. Our approach to generalization is
one of the unlimited flexibilities, based on simple
structuring of integration intervals — over the source
volume (threefold integration) and over the detector
visible surface (twofold integration), separating the
source from the detector in the integration process, as
follows.

Starting with a point source arbitrarily posi-
tioned vs. acylindrical detector [20], fig. 2, we obtain

_ 2t Ry _
Q = [d6 | Fy FoF, (T, Pg )RR +
0 0

6 0 -
+Ry [d0 [ Fy FoeF, (T, P )dh+
0, -H
21 R() o
+J.d6J-FattFeffF4(T9PS4)RdR (3)
0 0

where Sp = 8; + S, + 53 + S,. For a true cylindrical de-
tector, with no edge rounding (bulletization), S; = &,
thus: SD = Sl + S2 + S4 [20]
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............ l_’ ﬂ, S,
+”1 :
" Iy
| =
Ho f_ S,
d<0 )
Py, | Ry
S.
Z ) Psy +;;4
| ' Detector
r Source

Figure 2. Point source arbitrarily positioned vs. the
detector
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E(T’PSI):

Note that the above Q2 value for point source, eq.
(3), will feature as sub integral function in all subse-
quent formulae for complex sources, whereby integra-
tion over the source volume will be additionally per-
formed, without combining them within an integrand;
this is critical for generalization.

The co-ordinate system is positioned as illus-
trated in figs. (4-7). Since for bulletized detectors parts
of surfaces S,and S, are virtual (dashed lines in fig. 2),
functions F, and F,can be expressed as

S 2 S0AR>Ry—pATPs NSy # D
S
TP,

0, z; >0AR>Ry —pATPs NS5 =<
0, z; <0
“4)

with PS1 (Rcos@,Rsin0,0),n, =(0,0,-1),
R E[O,Ro],e E[O,ZTE],Ps3 :TPSI ﬁS3and
ny =iy (Ps3) [20]
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(a)

Figure 3. Two possible configurations of the detector contact cavity; flat (a) and rounded (b)
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Figure 4. Integration limits for the angle 0: 6, > 0 (a). 6, <0 (b)

where PS4 (RcosO,Rsin0,-H),R €[0,R],0 €[0,2n]
n :(O,O,l),PS5 =TPs, NSs,and 75 =17 (PSS); the
latter comes to either:

fis =05\ iis =i, With 7ig = (x5, y5,0)/ /x5 + y3,
ns =(0,0,1) for flat contact cavity, fig. 3(a), or

ﬁS :(XSsySaZS +Dp +Rp)/

/\/x§ +y3+(zs+D, +R,)’

for rounded contact cavity, fig. 3(b), where xs, ys, z5
are the co-ordinates of Pg_and D, = H - H,,; note that in
fig. 3 proportions of the cavity are distorted for visual
clarity.

Angles 0, and 0, fig. 4 are obtained as

arccos Xy | Vo1 20
90,1 = ~ ~
2m—arccos Xy, Vo1 <0
with
2, 2 p2
. Rolxr|% yrx7 +y7 =R
1,0 = 2 2 -sgn x
T
Xp+Vr
[2, 2 52
5 _RoyT i‘xr" xr+yr —R;
0.1 = 2 2
Xp +Yr

If x; = 0 (point at y-axis), then:

2 2 A2
A ~ Rj A YRy = Yo,

Vo= =—and ¥, =%
yr R

By defining sub integral functions F, , F,, and F,
in the previous manner, integration limits for the
source are becoming independent of the detector di-
mensions, as well as of the source positioning vs. the
detector. Note this was previously not the case [6] — in-
tegration over the detector surface [0 rdrwas rather in-
separable from the integration over the source volume,
which was a limiting factor for applicability.

Thus, integration limits over the source are now
independent of the detector whatsoever. This discon-
nection, i. e. source detector separation in the integra-
tion process is a novelty in mathematical modelling of
efficiency calculations. Apparently, it has a crucial
consequence in enabling unlimited flexibility and
hence generalization of the model.

As to geometry, source position vs. the detector
is defined by the coordinates of the point 7(x, +...,
+...,d +...), where x,, y, are the source axial displace-
ments (shifts) from the detector in horizontal (Oxy)
plane and d is vertical distance between the source bot-
tom surface and the detector upper surface (5)). It can
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Figure 5. Cylindrical source positioned above the detector with parallel axes (a), by the detector side with parallel axes (b),

and above the detector with perpendicular axes (c)

be positive or negative, depending on whether the
source bottom surface is above S, or below it.

Application to some specific source shapes

Equation (3) can readily be applied to most situa-
tions encountered in gamma spectrometry practice.
Few examples concerning most common source
shapes and source vs. detector positioning, as well as
some not so common, are given below.

Cylindrical sources

For a cylindrical source coaxial with the detec-
tor, figs. 5(a), and 5(b), eq. (3) gives

2n K
.Q:lejdﬁl)-[rd{]’de.[ att ffFl(T Py JRAR+
1y L1 0 0 0

Ry [0 | Py FuFy (TP, Y+
0, -H

21 (]
- j do j wt FerrFa (T, Py, )RdR} (7)
with T(x, + 7 cosg, r sin @, d + [) and x, axial displace-
ment of the source vs. the detector.
For a perpendicularly positioned cylindrical
source, fig. 5(c) we obtain

L

fdzjd(pjg rd{de [ Fut FeeFy (T, Ps, )RR+
ry L 1 0 0 0

2

+R j do j wt FerrFa (T, Pg, Ydh+
6, -H

ﬁ:

2 Ry o
+[d6 | Fy FoFy (T, Py, )RdR} (8)
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Figure 6. Horizontal axial displacement (in Oxy plane) of
a perpendicularly positioned cylindrical source vs. the
detector, fig. 5(c)

with T(xo+ [, yo+rsing, d +ry+ r cose) and x,, y, hori-
zontal axial displacements (in Oxy plane) of the source
vs. the detector, fig. 6.

Marinelli sources

For Marinelli type sources, fig. 7, eq. (3) yields

L 7
Wjdl.[dgo.f rd{fd@ [ o FugFy (T, Py RAR+

0 0 s Lo 0
Ry [40 | FyFonFo (7.5, X+

0, -H

21 Ro
+J do I i FeieFa (TP, )RdR} 9)

with T(xo + 7 cos, r sing, d + 1), x, axial displacement
of the source vs. the detector, and
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Spherical sources

For a spherical source, fig. 8, we obtain

5:

3 0T 2n N 2 Ry o
3 I smwdwjdgoj er{JdG _|'Fatt FexFy (T, Pg)
4y m o 0 0 0 0
6 0 B
RAR+ R, [d0 [ F o F o F, (T, P Y+
0, -H
2n Ro o
+[d6 [ Fy FopFy (T, P, JRAR (10)
0 0

with T(xo + r siny cosy, r siny sing, d + ry + r cosy)
and x, displacement of the center of the sphere from
the detector axis; various possibilities of positioning
are illustrated in fig. 9.

Cuboid sources

For cuboid (rectangular parallelepiped) type
sources, fig. 10, we obtain

a b
B 1 L 2 2 2 Ry _
QZE dl_[dx,"d J.de.[FattFeffFl(T’PSl )RdR+
0 boLo o

|
)

2

O —
do JFattFeﬁF2(TBPSz ﬁh—i_

-H

+R,

(3]
S

21 Ro o
+[d0 [ Fy FopFy (T Py, )RdR:l (11)
0 0

Source

=

:}(6 Detector

Figure 8. Spherical source

with T(xo + x, yo + ¥, d + 1) and x, yy horizontal axial
displacements (in Oxy plane) of the source vs. the de-
tector, fig. 11.
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Figure 9. Various positions of a spherical source vs. the detector
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Figure 11. Horizontal axial displacement (in Oxy plane)
of a cuboid source vs. the detector

Computation times

Concerning the practical applicability, one
should bear in mind the required computation times
for efficiency calculations in the frameworks of partic-
ular tasks. In principle, computation times should be
shorter (preferably much shorter) than counting times

for the actual samples — thus, not to be a limiting factor
in laboratory practice. This can be taken as one of the
acceptance criteria.

Although the steady speeding up of computers
(thanks to ever more powerful hardware) is greatly
helpful, optimization of numerical integration is still
critical in this respect. In the current approach, optimi-
zation was strictly taken care of, enabling computation
times to be kept at a reasonable/acceptable minimum.
With modern personal computers it is a matter of min-
utes, even seconds — which is at least an order of mag-
nitude shorter than times required for Monte Carlo —
MC (i. e. statistical) calculations for the same calcula-
tion precision. Note that calculation precision is regu-
lated either by segmentation of integration intervals
(in numerical integration methods) or by the number
of generated statistical events (in MC methods) — to
the advantage of numerical integration.

In the advanced gamma spectrometry the previ-
ous fact transforms into the possibility of performing
batch jobs of thousands of efficiency calculations, for
the sake of deriving some higher order conclusions. A
typical example is error propagation studying. For in-
stance, in a study of the impact of detector crystal
bulletization in gamma spectrometric analyses, more



N. N. Mihaljevi¢, et al.: A Generalized Mathematical Model for Efficiency ...
42 Nuclear Technology & Radiation Protection: Year 2019, Vol. 34, No. 1, pp. 34-46

than 150 000 efficiency calculations were prepared
and performed in half a day time on an ordinary PC
[21]. Such studies are apparently a key to the advanced
gamma spectrometry.

The outlined mathematical model is intended to
be gradually incorporated into ANGLE software, thus
making it readily available for routine use by gamma
spectrometry community. We believe this will be a sig-
nificant step forward in advanced gamma spectrome-
try practice.

NUMERICAL TESTING

In order to obtain an idea about the reliability and
accuracy of the mathematical model — pending the ap-
propriate experimental verification — we performed
extensive numerical testing, as follows.

Mathematical models for some simpler, but
widely used counting geometries (e. g. point, disc, cyl-
inder and Marinelli sources, coaxially positioned with
the detector) were developed a long time prior to the
here described generalization. Extensive experimental
verification and many years of successful practical ap-
plication in numerous laboratories have confirmed
both their reliability and accuracy (see e. g. ref. [18]).
Comparing mathematical models for new geometries
from the here elaborated generalized mathematical
model with the previously verified ones, using numer-
ical testing (simulation), is thus justified.

As an example, the mathematical model for effi-
ciency calculations of rectangular cuboid (brick
shape) sources was extensively numerically tested by
comparing it to the previously/independently devel-
oped and well established/verified model of cylindri-
cal sources. Results, as well as the methodology, are
given in much detail in a separate paper [22]. Shortly, a
brick shape source can be understood as a sort of inter-
polation between the corresponding outer and inner
cylinders. By suitably varying dimensions and propor-
tions of these, one can obtain a fair idea about the reli-
ability (absence of systematic errors) and accuracy of
the model. Also, by setting the source dimensions
close to zero, it can be compared with previous models
of disk shape and point sources. Finally, the introduc-
tion of the so called equivoluminous cylinder (having
the same height and volume as the actual cuboid) gives
another perspective to the comparison. The results ob-
tained were exactly as expected, with effective solid
angles (thus, detection efficiencies as well) for brick
sources lying consistently, with no exception, between
those of corresponding inner and outer cylinders,
while reasonably close to equivoluminous cylinders.
This clearly and conclusively indicates that the brick
model is free of systematic errors (bugs), thus accurate
and reliable.

We have performed a similar (although less ex-
tensive and differently structured) testing for a number

of practically applicable counting geometries. Results
are affirmative and convincing as well, as illustrated in
tabs. 1-4 for cylindrical, Marinelli, rectangular cuboid
and spherical sources, respectively. Table 5 refers to
testing various sources approaching zero dimensions
(quasi point sources) by comparing the new results to
those obtained by the previous approach (point
sources). Realistic detector dimensions and counting
configurations (source and its positioning vs. the de-
tector) are used in all exercises; these are not presented
in detail for the sake of conciseness. Here too, results
are logically fitting into expected patterns of effective
solid angle behavior/variations with varying geomet-
rical parameters, favorably indicating the correctness
of the mathematical model applied.

Despite the previously elaborated justification,
it is well understood, of course, that numerical testing
cannot replace experimental verification. Given the
complexity of the latter, it is pending.

In tabs. 1 and 2, Q2 denotes the effective solid an-
gles calculated using the new mathematical model,
while ©Q, is obtained by the appropriate previous
model (relevant references are indicated). The A [%] is
the relative difference between the two, in %. All lin-
ear dimensions are in mm.

PRACTICAL APPLICABILITY

It was the aim of the present work to enable prac-
tically unlimited applicability of gamma spectrometry
in real situations. An extensive listing of the fields
where gamma spectrometry is a method of either
choice or back up would be too long, but some typical
ones may include:

— environmental radioactivity monitoring,

— radiation protection,

— medicine and health physics,

— food safety,

— fuel cycle and nuclear industry,

— radioactive/nuclear waste management,

— regulatory control of radioactivity,

— radiological/nuclear emergency preparedness and
response,

— geology and geochronology,

— metrology and nuclear data standardization,

— nuclear safety, security and safeguards,

— laboratory quality management,

— scientific research, and

— education and training, efc.

By resorting to the mathematical model pre-
sented, one can readily achieve practical solutions for
a realistic gamma spectrometric case. It should be
noted, nevertheless, that in practice a relatively small
number of typical counting geometries (particularly
cylindrical and Marinelli sources) account for the vast
majority of measurements — the model may thus also
serve to confirm the reliability of the existing mod-
els/software users are applying in their work.
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Table 1. Numerical testing of the new mathematical model for cylindrical sources, eq. (7), by comparison to previous
models [15, 16]. Sources are positioned at the detector top, without and with axial displacement (x,); detector: HPGe
coaxial

70 < Ro, ro = 12 mm, L = 25 mm, container wall =2 mm, d = 6.1 mm|r, > Ry, ro =40 mm, L = 55 mm, container wall = 2.5 mm, d = 6.6 mm

E, xo=0 Xo =9 mm xo=0 Xo =9 mm
I9) 2 A [%] Q 2 A [%] Q 2 A [%] 19) 2 A [%]
50 10.472647|0.472601| 0.010 | 0.444023 | 0.444023 | 0.000 |0.128098|0.127669| 0.335 |0.125396|0.125411| 0.012
100 | 1.46302 | 1.46296 | 0.004 1.37421 1.37421 0.000 ]0.449401|0.448667| 0.163 |0.441442|0.441473| 0.007
200 | 1.40720 | 1.40791 | 0.050 1.33018 | 1.33022 0.003 ]0.49135210.491347| 0.001 |0.483383|0.483304| 0.016
500 | 1.17998 | 1.18135 | 0.116 1.12239 | 1.12245 0.005 ]0.455746|0.457488 | 0.382 |0.450172|0.449825| 0.077
1000| 1.02621 | 1.02772 | 0.147 | 0.979146 | 0.979208 | 0.006 |0.418887|0.421502| 0.624 |0.414876|0.414393| 0.116
3000{0.791933|0.793368| 0.181 | 0.758291 | 0.758356 | 0.009 |0.344715|0.347899 | 0.924 |0.342564|0.341993| 0.167
5000{0.743028 | 0.744415| 0.187 | 0.711920 | 0.711984 | 0.009 |0.328844|0.332058 | 0.977 |0.327017|0.326441| 0.176

Table 2. Numerical testing of the new mathematical model for Marinelli sources, eq. (9), by comparison to the previous
model [17]. Detectors: HPGe coaxial and LEPD

ro =60 mm, L =95 mm, L, = 80 mm, r,, = 35 mm, container wall =2 mm|ry = 60 mm, L =7 mm, L, =80 mm, ,= 35 mm, container wall =2 mm

E, HPGe LEPD HPGe LEPD

Q o A %] Q o A [%] Q 2 A [%] Q o A [%]
50 |0.189844|0.190609 | 0.403 | 0.709919 | 0.711416 | 0.211 |0.225634|0.225389| 0.109 |0.442804|0.442774| 0.007
100 | 0.687228|0.691107 | 0.564 | 0.858830 | 0.863541 | 0.549 ]0.512806|0.510682| 0.414 |0.581143|0.581026| 0.020
200 | 0.775072|0.779187 | 0.531 | 0.832765 | 0.837575 | 0.578 ]0.580243|0.573471| 1.167 |0.602005|0.601888| 0.019
500 | 0.704583|0.709513 | 0.700 | 0.744796 | 0.748910 | 0.552 ]0.527377|0.520308| 1.340 |0.545788|0.545690| 0.018
1000/ 0.633368 | 0.638516| 0.813 | 0.669284 | 0.672872 | 0.536 |0.471647|0.465155| 1.376 |0.490263|0.490167| 0.020
3000/ 0.504865 | 0.509704 | 0.958 | 0.535025 | 0.537786 | 0.516 |0.373183|0.368011| 1.386 |0.390917|0.390812| 0.027
5000/ 0.477054 | 0.481741 | 0.982 | 0.505958 | 0.508536 | 0.510 |0.351205|0.346316| 1.392 |0.368490|0.368383| 0.029

Table 3. Numerical testing of the new mathematical model for two cylindrical sources perpendicularly positioned vs. the
detector axis, facing the detector side, eq. (8), by comparison to a rectangular cuboid source, eq. (11) [22],
Qpc —rectangular cuboid, ) 5 — laid out cylinder, ;| — laid in cylinder, x, = 55 mm, y, =0

5LO 5RC 5LI 5LO 5RC 5LI
E ro=12.5 mm a =50 mm ro=17.7 mm 7o =35 mm a=50mm 7o =50 mm
’ L =50 mm b =25 mm L =50 mm L =50 mm b =70 mm L =50 mm
d= 42.9 mm L=25mm d= —48.1 mm d=-65.9 mm L =70 mm d=-80.9 mm
d= —42.9 mm d=-65.9 mm
50 0.220336 0.216270 0.205603 0.162344 0.149261 0.131879
100 0.816689 0.800290 0.761793 0.596558 0.548907 0.468995
200 0.896052 0.879185 0.840975 0.670642 0.621660 0.535789
500 0.793455 0.780456 0.751725 0.612430 0.571243 0.496910
1000 0.703761 0.693366 0.670801 0.553336 0.517886 0.453094
3000 0.552762 0.545688 0.530719 0.444211 0.417402 0.367752
5000 0.520762 0.514397 0.501060 0.420979 0.395965 0.349524

In facilitating the previous, providing adequate
computer codes is apparently crucial. A gradual intro-
duction of the mathematical model into ANGLE soft-
ware [ 18] is therefore highly desirable.

CONCLUSION

In the present paper, a generalized formula for
the calculation of effective solid angles is elaborated,

with the aim of paving the way and clearing the limita-
tions to quantification of gamma spectroscopic
measurements (i. e. gamma spectrometry) in practical
conditions. Semi empirical efficiency transfer ap-
proach is employed, while efficiencies are calculated
using the effective solid angle concept. Generalization
is achieved through unlimited flexibility, yet simplic-
ity in organizing/structuring numerical integration in-
tervals. Crucially, integration limits over the source do
not depend on the detector whatsoever. The examples
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Table 4. Numerical testing of the new mathematical model for a spherical source ﬁs, eq. (10), by comparison to the
equivoluminous cylindrical source (), eq.(7), without and with axial displacement (x,); various positions vs. the detector

(d) are considered

fol fo% foy 2 fos fo% Qg Qc
Ey xo=0 X0 =0 Xo=12mm | Xo=12mm | Xo=50 mm Xo =50 mm Xo =50 mm Xo =50 mm
d=4.1mm |d=6.628mm| d=4.1mm [d=6.628mm|d=-209mm|d=-18372mm | d=-809mm | d=-78.372 mm

50 0.322976 0.330157 0.281971 0.285538 0.137715 0.141256 0.182847 0.191010
100 1.00465 1.03903 0.896567 0.920019 0.564322 0.575498 0.567284 0.577581
200 1.00609 1.04127 0.914182 0.940302 0.665290 0.674070 0.649138 0.655709
500 0.868444 0.896866 0.799348 0.821247 0.620362 0.625237 0.602586 0.605582
1000 | 0.766949 0.790852 0.710360 0.729129 0.564203 0.567096 0.547456 0.548778
3000 | 0.602791 0.620461 0.562296 0.576522 0.455778 0.456741 0.441965 0.441790
5000 | 0.567814 0.584207 0.530372 0.543632 0.431466 0.432058 0.418378 0.417928

Table 5. Numerical testing of the new mathematical model for various source shapes, by converging source dimensions to
zero (quasi-point sources); results given for coaxial positioning (xy = 0, yy = 0) and with axial displacement; the indices
denote: CC — coaxial cylinder, CP — perpendicular cylinder, RC — rectangular cuboid, S — sphere, P — point; source

dimensions are ro=L=a=5b==0.001 mm

5CC 5CP 5RC 5S 5}’
Br x0=0 x0=0 ;228 ;gzg X0=0
50 0.592766 0.592752 0.592767 0.592752 0.592627
100 1.65497 1.65492 1.65497 1.65492 1.65470
200 1.53230 1.53226 1.53230 1.53226 1.53206
500 1.23005 1.23002 1.23005 1.23002 1.229901
1000 1.03930 1.03927 1.03930 1.03927 1.03921
3000 0.775281 0.775262 0.775282 0.775262 0.775249
5000 0.719431 0.719413 0.719431 0.719413 0.719411
Xo =60 mm Xo =60 mm Xo ;062 (r)nm Xo ;)62 (r)nm Xo =60 mm
50 0.069433 0.069433 0.069434 0.069433 0.068843
100 0.35389 0.353888 0.353891 0.353886 0.351894
200 0.411535 0411514 0.411485 0.411502 0.409954
500 0.365642 0.365584 0.365511 0.365558 0.365171
1000 0.321919 0.321848 0.321774 0.321821 0.321876
3000 0.25014 0.250062 0.249989 0.250035 0.250549
5000 0.233872 0.233793 0.23372 0.233766 0.234393
Yo £O6B?nm Yo ioﬁB?nm ?0;3501321 );)0;3501?91? %o =60 mm

50 0.069446 0.069447 0.06942 0.069421 0.068843
100 0.354011 0.354015 0.353941 0.353945 0.351894
200 0.411588 0.411577 0.411499 0.411517 0.409954
500 0.365623 0.365583 0.36555 0.365584 0.365171
1000 0.321875 0.32183 0.321817 0.32185 0.321876
3000 0.250079 0.25003 0.250035 0.250067 0.250549
5000 0.233808 0.233759 0.233767 0.233799 0.234393

elaborated prove practical applicability in a straight-
forward manner, while numerical testing confirms its
reliability.

Despite complex calculations (high precision
five-fold numerical integration), computation times
are kept within order of minutes (or less). This enables

creation of batch jobs and computation of numerous
(thousands, even millions) efficiency values in short
periods of time, from which higher-level conclusions
can be derived — facilitating the practice of advanced
gamma spectrometry likewise.
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KA/INBPAIINIY E®OUKACHOCTU JETEKTOPA TAMA-3PAYEIBA
IIpumena y peajlHUM ciIy4ajeBUMa
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