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This work reports on the spatial rainbows occurring in transmission of 10 keV protons
through hexapole lens. Positive potentials of the lens electrodes are set to be 0.9, 2, and 5 kV.
The spatial rainbows and corresponding proton distributions are calculated by using an accu-
rate analytical approximation of the numerically obtained lens potential. Further, for the pos-
itive potential of the lens electrode equal to 0.9 kV; it has been shown that application of catas-
trophe theory leads to a simple polynomial non-linear mapping, generating accurate spatial
rainbows at the exit and in the drift space behind the lens.
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INTRODUCTION

Electrostatic hexapole lens is an ion beam optics
element consisting of six electrodes being on the alter-
nating electrostatic potentials +¥),, that form a hexa-
gon around the optical axis. The medium transverse
position (TP) plane of the lens is shown in fig. 1. It is
well known that the electrostatic potential of a
hexapole lens around the optical axis is purely anhar-
monic, i. e., its linear and parabolic parts are equal to
zero [1, 2]. This implies that the second-order effects
of'a hexapole lens can be used to correct the ion beam
aberrations without changing the first-order focusing
conditions. Therefore, in ion beam optics, the main ap-
plications of hexapole lenses are the aberration correc-
tions [3]. Reduction of the second-order image aberra-
tion for mass spectrometers, by using the electrostatic
hexapole lens, was reported in [4, 5]. Further, the ap-
plication of hexapole lens correctors for the three or-
der image aberration (the spherical aberration), in the
scanning and transmission electron microscopes, was
investigated in [6, 7]. Trajectories of charged particles,
in the electrostatic hexapole lens, have been calculated
in details by Taya and Matsuda [2].

Recently, our group has been investigating the
focusing and accelerating properties of the square lens
with all electrodes being on the positive potential
[8-11]. It was shown that the rainbow effect occurred
for these lenses and strongly influenced their focusing
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and accelerating properties. We called the lens the
square rainbow lens [8].

In this work, occurrence of the spatial rainbows,
in transmission of 10 keV protons, through electrostatic
hexapole lenses, with the alternating electrode potential
7, for V,=0.9, 2, and 5 kV, are investigated. In addi-
tion, it is shown that catastrophe theory can be used to
model the spatial rainbows for V;, = 0.9 kV.
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Figure 1. The medium transverse position plane of the
hexapole lens
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THEORY

Since a hexapole lens has straight axis, positive
orientation of Cartesian coordinate system is chosen,
being defined in fig 1. It can be shown that the
hexapole lens potential can be approximated by a 2-D
polynomial expression [2]. The imposed symmetry
conditions on the 2-D hexapole potential, together
with the fact that the Laplace's equation must hold, re-
sults in the following expression for the potential (up
to the sixth order) [2]

Pl )= (7 -3 (1)

So

where, V, denotes the applied positive electrode po-
tential and s the radius of a circle inscribed within the
six electrodes (see fig. 1). Also, it can be shown that
the expression (1) is the best possible approximation
for the realistic potential if one sets the radius of the
electrodes to be: r=s0/2 [2].

In this work, the potential given by expression
(1) is considered. Further, in order to check its accu-
racy and applicability, the hexapole potential was cal-
culated numerically. The numerical calculation was
carried out applying the WIPL-D program [12], which
is based on the method of moments with the Galerkin
test procedure finite element method. The accuracy of
calculation was determined by choosing the number of
the linear algebraic equations, N, within the program.
This number was chosen to be N=2,913. It should be
mentioned, that due to the symmetry of the lens, the
computation was performed in the quadrant defined
by x=10, 116 mm], y = [0, 116 mm], and z = [0, 400
mm]. Also, the computational mesh was defined by
Ax=Ay =1 mm and Az =2 mm.

Let us consider the mapping

X050 —X,y (2)

where x, and y, are the proton spatial components in
the impact parameter (IP) plane, x and y are the proton
spatial components during its motion through the lens
and/or after it, at the transversal position (TP) plane.
Proton spatial components in the TP plane are deter-
mined numerically by using the Runge-Kutta method
of the fourth order for calculation of the proton trajec-
tory [13].

The mapping (2) is presented with the following
pair of functions: x =x(x, y,) and y = ¥(x, ¥,). In order
to investigate the characteristic features of these func-
tions, the following Jacobian is introduced:
J pd:ef 0,0, y—0,x0, y. It is geometrically well
known that the Jacobian can be interpreted via the rela-
tion, J,, = dxdy/dx,dy,, where dx, dy, and dxdy are ele-
mentary areas in the IP and TP planes, respectively.

Spatial rainbow lines in the IP plane are defined
as solutions of the equation: J, = 0. The spatial rain-
bow lines in the TP plane are determined by applying
the mapping (2) to the spatial rainbow lines in the IP
plane. Geometrical interpretation of the Jacobian im-

plies that one can expect focusing properties of the
beam around spatial rainbow lies in the TP plane, due
to the fact that dxdy — 0 as J, — 0, whereas dx, dy, is
constant. Further, if the Jacobian is equal to zero, then
the mapping (2) is not one-to-one (bijective) and vice
versa. Therefore, there is an abrupt (catastrophic)
change along the rainbow line, which serves as the
border between the so called bright and dark sides of
the rainbow i.e. between the regions of high and low
intensity of protons, respectively [8-11].

RESULTS AND DISCUSSION

In our calculations, we set for the radius of elec-
trodes, = 2.82 cm, the length of the lens, L =40 cm,
the radius of the circle inscribed within the electrodes,
8o = 2r =15.64 cm, and for the radius of the grounded
cylinder of the lens, R =20 cm (see fig. 1). The initial
proton Kkinetic energy is taken to be £ = 10 keV,
whereas the initial number of protons is 400 000. The
initial proton beam is parallel and the protons are as-
sumed to be homogenously distributed within the cir-
cle of diameter equal to 5.5 cm, which is determined by
the circular apertures in the entrance and exit plates,
with the same diameter equal to 5.5 cm. The origin of
the used coordinate system is taken to be in the middle
of the lens. The horizontal and vertical co-ordinates,
y and x, respectively, are chosen so that the proton
beam is directed toward positive direction of z-axis,
which coincides with the lens axis. The entrance and
exit transversal planes correspond to the longitudinal
coordinatez=-21.5 cmand z=21.5 cm, respectively.
It should be noted that the IP plane coincides with the
entrance plane in the case of potential (1), whereas for
the numerically calculated potential it corresponds to
z=-40 cm, when the potential can be approximated by
Zero.

Figure 1 shows the characteristic points in the
medial plane of the lens designated by a, b, ¢, and d.
Their co-ordinates are: (2 cm, 0), (4 cm, 0), (1.73 cm,
1 cm), and (3.46 cm, 2 cm), respectively. They will be
used for the comparison between the numerically cal-
culated electrostatic field and the one obtained from
the analytical potential (1).

Dependencies of the numerically calculated
components of electrostatic fields, E,, E, and E, and
the corresponding analytical components, EY ,E7,
and E¢, on the co-ordinate z, for the points a, b, ¢, and
d,are shown in figs. 2(a-d), respectively. The potential
of an electrode is taken arbitrary to be, ;=1 V. It is
clear, from fig. 2, that the transversal components of
the electrostatic field £ and E] excellently approxi-
mate the components £, and E,, inside the lens. Fur-
ther, inside the lens, £, is close to zero, whereas the E¢
component is exactly equal to zero, which follows
from the fact that the potential (1) does not depend on
z. Thus, small differences between the analytical and
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Figure 2. Dependences of the numerical, E,, Ey, and E,, and analytical, E,’, E,’, and E,", components of the electric fields,
on the variable z, for transverse positions corresponding to (a) point a, (b) point b, (c) point ¢, and, (d) point d, in fig. 1

numerical electrostatic fields occur in the entrances
and exit regions of the lens edges since the numerical
electrostatic field includes the fringe fields effect.
However, on ref. [14] it was shown that the contribu-
tion of the fringe field effect in a hexapole lens was in
the order of (so/L)?. In our case, (s,/L)*= 0.005, which
is very small (an order of a half percent). Moreover,
fig. 3 shows, for the positive electrode potential, V=
= 0.9 kV, that the rainbow lines obtained from the nu-
merical calculation, designated by red color, and the
analytical one, designated by green color, are very
close to each other. (Alternative gray and dark colors
are used in printed version of the journal). Therefore,
the fringe field effects could be neglected and the 2-D
potential (1) has been applied further in the text. As a
consequence, as it has been already mentioned, the

IP plane coincides with the entrance aperture plane of
the lens, and the drift space approximation holds for
z>21.5 cm, i. e., the proton trajectories are treated as
the straight lines after they exit the lens.

Figures 4(a, b) show the closed rainbow lines in
the IP plane and the corresponding rainbow lines and
spatial distributions of transmitted protons in the exit
TP of the lens, for the electrode potential V;=0.9 kV,
respectively. The red and green (gray and dark) points
designate the focused and defocused protons, respec-
tively. The proton is treated as focused if it satisfies
the condition xv, + yv, <0, where v, and v, are the
transverse co-ordinates of the ion velocity [5]. Other-
wise, it is defocused. In the calculation, it is assumed
that protons, being in the areas inside the electrodes, or
not passing through the exit aperture, are not taken into
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Figure 3. The red and green (gray and dark) points desig-
nate analytical and numerical rainbow lines, respec-
tively, at the exit of hexapole lens for the positive
potential of the lens, V= 0.9 kV
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account. The same assumption holds for the rainbow
lines. Figure 4(b) shows the cusped triangular rainbow
line with the cusps being directed toward negative
electrodes of the lens. It is clear that the shape of the
distribution is determined with the rainbow line, i. e., it
acts as a “skeleton” of the distribution. Also, it is the
border between the “brightside” and the dark side of
the rainbow, corresponding to high and low proton
yield, respectively. Further, focused protons are con-
fined within this rainbow line, whereas the defocused
protons are concentrated in the areas around the cusps
of the rainbow line.

For the electrode potential V;=2.0kV, figs. 4(c)
and 4(d) show that the second rainbow lines, in the IP
and exit TP planes, appear whereas the first rainbow
lines are becoming smaller in both of the planes — in
comparison with the cases presented in figs. 4(a) and
4(b). Also, the focused protons are confined within the
first cusped triangular rainbow line and in three areas
close to the second rainbow line directed toward the
positive electrodes of the lens.

V, = 0.9 kV
6

 V=50kV

U] ylem)

Figure 4. Rainbow lines in the impact parameter plane for (a) ¥, = 0.9 kV, (¢) V=2 kV, and (e) V', =5 kV, and
corresponding distribution of protons in the exit transverse plane for (b) V,=0.9 kV, (d) V', =2 kV, and (f) ,=5KkV where
the red and green (gray and dark) points designate focused and defocused protons, respectively
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Figure 4(e) and 4(f) show the rainbow lines in
the IP plane and the corresponding rainbow lines
and the spatial distribution of transmitted protons in
the exit TP of the lens, for the electrode potential
V=5 kV. Figure 4(d) confirms the given conclusion,
that the second rainbow lines define the shape or “skel-
eton” of the beam at the exit of the lens and that the fo-
cused protons are confined within the first cusped tri-
angular rainbow line and in three areas close to the
second rainbow lines, directed toward the positive
electrodes. Further, it is clear that the second rainbow
lines consist of parts of one almost closed cusped rain-
bow line, with two pairs of cusps being directed to-
ward the negative electrodes of the lens.

Evolution of the spatial rainbow lines in the drift
space for the electrode potential V/,=2kV, for the vari-
able z=21.5, 40, 70, and 120 cm, is presented in fig.
5(a). Interestingly, this evolution shows that the first
rainbow line decreases, as the variable z increases, but,
on the other hand, the outer parts of the second rain-
bow line are joining together to form one single sec-
ondary rainbow line, which increases as the variable z
increases. Figure 5(b) shows enlarged the evolution of
the first rainbow line for the given values of variable z.
It is clear from fig. 5(a) and (b) that, for the large dis-
tances from the lens, the first rainbow line tends to a
point, keeping its shape, and the spatial distribution of
the proton beam has been determined by the second
rainbow line only.

In general, catastrophe theory is a mathematical
theory of structurally stable family of functions, that
can be used in physics and other branches of science as
a tool for obtaining the simple polynomial models of
the processes under the investigations [15]. In its ap-
plication, it is implicitly assumed that the processes are
structurally stable, i. e., that they are not sensitive to
small perturbations. In further parts of this work, the
results of application of catastrophe theory to the spa-
tial rainbows and the corresponding proton distribu-
tions for ¥, = 0.9 kV, will be presented.

Let us introduced the generating function

1
F(xo’y0§x»y,2)=5(x§ + 5 )+
1
+§a(z)(y8 =3yx5 )+
+%b(z)(x§ + yé )2 —XgX— YoX 3)

The first term corresponds to the linear one in the
mapping defined by egs. (4) and (5), the second and
third terms correspond to elliptic umbilic and rota-
tional cusp catastrophes [15, 16], or the X, catastrophe
when its modulus is equal to 2 [17, 18]. It should be
noted that the second term of the generating function is
related to the astigmatism of the second order, whereas
the third term is related to the spherical aberration of
the third order [16].

The generating function defines the following
polynomial non-linear mapping, x,, y, — X, , via the
relations

(0)

Figure 5. (a) Rainbow lines in the transverse plane for
z=21.5, 40, 70, and 120 cm, and (b) enlarged first
rainbow lines presented in (a)

0, F(xg,y05%,3,2)=0—> y=
= Yo +a(z)(¥5 —x5)+b(2)yo (x5 —¥5) (4

aon(xoayO;xayaz):O_)x:
=xo —2a(z)xo v +b(2 0o (x3 +¥5)  (5)

According to catastrophe theory, the conditions
(4) and (5) define the equilibrium set of the family of
functions F [15]. It can be shown that the Jacobian of
the 2-D mapping, defined with (4) and (5), is given by

J (X0, Y9 X, y,2) =02 F&5 F—(8,0,F) =
=1+4y;[b(z)-a’ (2)]+4x3[b(z)—a’ (2)]-
—4a(z)b(z)ys +12a(2)b(z)yoxs +
+3b%(2)yg +3b7 (2 )xg +6b7 (235 (6)

which represents, on the other hand, the Hessian of
generating function, H(F) [15]. According to catastro-
phe theory, equation, H(F) = 0, which is equivalent to
the condition defining the spatial rainbow lines in the
IP plane, corresponds to the catastrophic set of the
family of functions /. Bifurcation set of the family F'is
defined as the mapping of the catastrophic set via the
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equations (4) and (5) [15], and, therefore, corresponds
to the rainbow lines in TP plane. Thus, we have shown
adirect connection between the rainbow lines in the IP
and TP planes and the catastrophic and bifurcation sets
of the generating function (3), respectively.

Figure 6(a and b) show the model rainbow lines
obtained by applying the mapping black line (4) and (5)
and the numerically calculated red (gray) line ones in
the IP and TP planes, respectively, for z=43 cm. The pa-
rameters a and b are determined in the fitting procedure,
which obtains the best matching between the corre-
sponding numerical and model rainbow lines, in both IP
and TP planes. This is achieved by minimizing the sum
of squared distances between corresponding points 1
and1,,2and2,,1"and 1", and, 2" and 2", presented
in figs. 6(a and b). The same procedure is applied for the
values of variable z = 50, 60, 70, 80, 90, 100, 120, and
140 cm, in the drift space. This is illustrated in figs. 6(c)
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and (d) for z=90 cm. One can conclude that the match-
ing between the numerical and model rainbow lines, in
both IP and TP planes, is excellent.

The obtained values of parameters a and b are
presented in figs. 7(a and b), respectively. The analysis
shows that dependences of parameters a and b on vari-
able z can be excellently fitted with the following ana-
lytical functions, a(z) = a,—a, exp(—z/a,) and b(z) =
= b, — b, exp(—z/b,), respectively. Calculated parame-
ters of the fitting functions are: a; = 0.26 cm™, a, =
=0.54cm'anda,=29.10 cm,and b, =0.09 cm ™, b, =
=0.25 cm? and b, = 37.18 cm.

CONCLUSIONS

In this work, it is shown that the spatial rainbows
occur in transmission of 10 keV protons through the
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Figure 6. Numerical and polynomial model of rainbow lines for show, respectively, in red and black (gray and black)
colors for (a) =43 cm and (¢) 90 cm, in the impact parameter plane, and in the transverse position planes, for (b) z=43 cm

and (d) 90 cm
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Figure 7. Dependencies of the fitting parameters (a) a,
and (b) b, on the variable z

hexapole lens having positive potentials ;= 0.9, 2.0,
and 5.0 kV. They represent “skeletons” of the spatial
distributions and borders between the “bright sides”
and the “dark sides” of the rainbows, corresponding
to high and low proton yields, respectively. Further,
focused protons are confined within first rainbow line,
whereas the defocused protons are concentrated in the
areas around the cusps of the first rainbow line.
Applying catastrophe theory, for the positive po-
tential of the electrode, V,=0.9 kV, the analysis shows
that one can obtain simple non-linear mapping from
the IP to TP plane, that excellently model the numeri-
cally calculated spatial rainbow lines. Additionally,
dependence of the parameters of the mapping, a and b,
on the variable z, can be excellently fitted with the
exponential functions a(z) = a, — a, exp(—z/a,) and
b(z) = b, — b, exp(-z/b,), where a; = 0.26 cm,

a, =0.54cm'anda,=29.10 cm, and b, =0.09 cm ™2,
b, =0.25 cm™ and b, = 37.18 cm.
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Wrop H. TEJJEYKH, Cama M. TPYJOBWR 3/10JEK, Metap /1. BEINYEB,
Cphan M. IETPOBUR, He6ojua . HEMIKOBUh

IMPOCTOPHE AYITE U KATACTPO®E Y TPAHCMUCUIN ITPOTOHA
KPO3 EJEKTPOCTATUYKO XEKCAIIOJHO COYUBO

Y papy cy mpuKaszaHe IPOCTOPHE Ayre Koje ce jaBibajy NMpU TPAHCMUCHUjU CHOMA MPOTOHA
enepruje 10 keV xkpo3 xekcanonHo counBo. [To3uTuBHM NoTeHIUjanu enekrpoaa cy ounu 0,9, 2, u 5 kV.
ITpocropHe ayre u ofroBapajyhe pacroyelie MpOTOHA padyyHaTe cy KOpHITheheM Mpelu3He aHATUTHIKE
anpoKcHMaIyje HyMEpHYKH NOOWjeHOr NOTeHIWjala counBa. KacHuje, 3a MO3UTHBAH MOTCHIHUjaT
enekTpoyie xekcanona 0.9 kV, mokaszaHo je 1a mpuMeHa Teopuje KaTacTpode TOBOAM IO je[THOCTaBHOT
MOJIMHOMHOT, HEIIMHEAapHOT MpEClKaBama, KOje TeHepuille TadyHe MPOCTOpHE Ayre Ha H3ja3y H Y
CIIOOOTHOM MTPOCTOPY M3a COUMBA.

Kmwyune peuu: xexcaiioa, joncka outtiuka, iieopuja xatmaciipoghe, aunuja 0yze, abepayuja



